首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  国内免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   16篇
地质学   20篇
海洋学   1篇
自然地理   3篇
  2022年   1篇
  2020年   3篇
  2019年   5篇
  2018年   1篇
  2017年   8篇
  2016年   6篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Natural Resources Research - There have been many studies carried out in the past decades attempting to develop strategies for a safe injection of CO2 into storage sites without leakage and...  相似文献   
2.
A simulation framework based on Smoothed Particle Hydrodynamics (SPH) is introduced to model problems involving the interaction between flowing water and soil deformation. Changes in soil porosity and associated permeability are automatically adjusted within this framework. The framework’s capabilities are presented and discussed for three geotechnical problems caused by flowing water. The comparison between simulation results and experiments shows that SPH with the proposed concept is capable of quantitatively simulating the hydro-mechanical processes beyond limit state with satisfactory agreement. To improve the computational stability, a correction procedure and a new algorithm for the selection of the optimal time step are introduced.  相似文献   
3.
The complex stream bank profiles in alluvial channels and rivers that are formed after reaching equilibrium has been a popular topic of research for many geomorphologists and river engineers. The entropy theory has recently been successfully applied to this problem. However, the existing methods restrict the further application of the entropy parameter to determine the cross-section slope of the river banks. To solve this limitation, we introduce a novel approach in the extraction of the equation based on the calculation of the entropy parameter (λ) and the transverse slope of the bank profile at threshold channel conditions. The effects of different hydraulic and geometric parameters are evaluated on a variation of the entropy parameter. Sensitivity analysis on the parameters affecting the entropy parameter shows that the most effective parameter on the λ-slope multiplier is the maximum slope of the bank profile and the dimensionless lateral distance of the river banks.  相似文献   
4.
As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudcan performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling—which is based on using nonlinear springs and dampers instead of a continuum soil media—is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudcans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment-rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil-foundation interface.  相似文献   
5.
Gholami  V.  Ahmadi Jolandan  M.  Torkaman  J. 《Natural Hazards》2017,85(3):1835-1850
Natural Hazards - Climate change is currently one of the most important environmental issues. Dendrochronology is frequently used to identify the climatic changes most closely associated with...  相似文献   
6.
Shear wave splitting is a well-known method for indication of orientation, radius, and length of fractures in subsurface layers. In this paper, a three component near offset VSP data acquired from a fractured sandstone reservoir in southern part of Iran was used to analyse shear wave splitting and frequency-dependent anisotropy assessment. Polarization angle obtained by performing rotation on radial and transverse components of VSP data was used to determine the direction of polarization of fast shear wave which corresponds to direction of fractures. It was shown that correct implementation of shear wave splitting analysis can be used for determination of fracture direction. During frequencydependent anisotropy analysis, it was found that the time delays in shearwaves decrease as the frequency increases. It was clearly demonstrated throughout this study that anisotropy may have an inverse relationship with frequency. The analysis presented in this paper complements the studied conducted by other researchers in this field of research.  相似文献   
7.
8.
The Curie point depth map of Eastern Iran was constituted from spectral analysis of the aeromagnetic data. The reduction to pole (RTP) was applied to the magnetic anomaly data. The Curie point depth values from 165 overlapping blocks, 100 × 100 km in size, have been estimated. The Curie point depth method provides a relationship between the 2-D FFT power spectrum of the magnetic anomalies and the depth of magnetic sources by transforming the spatial data into the frequency domain. The centroid and top depth of the magnetic sources (respectively Z0 and Zt) is calculated from radially averaged log power spectrum for each block. Finally, the Curie point depth of Eastern Iran is obtained by Zb = 2Z0Zt. The highest value of 24 km is located in eastern and western boundaries of the Lut block, and the lowest value of 12 km is located at north of study area. The shallow depths in the Curie-point depth map are well correlated with the young volcanic areas and geothermal potential fields. Geothermal gradient ranging from 24 to 45°C/km. The deduced thermal structure in eastern Iran has a relationship with orogenic collapse associated with delamination of thickened lithospheric root between the Lut and Afghan continental blocks.  相似文献   
9.
10.
Groundwater and soil pollution from pyrite oxidation, acid mine drainage generation, and release and transport of toxic metals are common environmental problems associated with the mining industry. Nickel is one toxic metal considered to be a key pollutant in some mining setting; to date, its formation mechanism has not yet been fully evaluated. The goals of this study are 1) to describe the process of nickel mobilization in waste dumps by introducing a novel conceptual model, and 2) to predict nickel concentration using two algorithms, namely the support vector machine (SVM) and the general regression neural network (GRNN). The results obtained from this study have shown that considerable amount of nickel concentration can be arrived into the water flow system during the oxidation of pyrite and subsequent Acid Drainage (AMD) generation. It was concluded that pyrite, water, and oxygen are the most important factors for nickel pollution generation while pH condition, SO4, HCO3, TDS, EC, Mg, Fe, Zn, and Cu are measured quantities playing significant role in nickel mobilization. SVM and GRNN have predicted nickel concentration with a high degree of accuracy. Hence, SVM and GRNN can be considered as appropriate tools for environmental risk assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号