首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  国内免费   1篇
大气科学   4篇
地球物理   8篇
地质学   16篇
天文学   27篇
自然地理   2篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   7篇
  2015年   5篇
  2014年   11篇
  2013年   11篇
  2012年   6篇
  2011年   2篇
  2005年   1篇
  1998年   1篇
  1986年   1篇
  1977年   1篇
排序方式: 共有57条查询结果,搜索用时 140 毫秒
1.
Natural Resources Research - There have been many studies carried out in the past decades attempting to develop strategies for a safe injection of CO2 into storage sites without leakage and...  相似文献   
2.
3.
Banded iron formation (BIF) comprising high grade iron ore are exposed in Gorumahisani‐Sulaipat‐Badampahar belt in the east of North Orissa Craton, India. The ores are multiply deformed and metamorphosed to amphibolite facies. The mineral assemblage in the BIF comprises grunerite, magnetite/martite/goethite and quartz. Relict carbonate phases are sometimes noticed within thick iron mesobands. Grunerite crystals exhibit needles to fibrous lamellae and platy form or often sheaf‐like aggregates in linear and radial arrangement. Accicular grunerite also occur within intergranular space of magnetite/martite. Grunerite needles/accicules show higher reflectivity in chert mesoband and matching reflectance with that of adjacent magnetite/martite in iron mesoband. Some grunerite lamellae sinter into micron size magnetite platelets. This grunerite has high ferrous oxide and cobalt oxide content but is low in Mg‐ and Mn‐oxide compared to the ones, reported from BIFs, of Western Australia, Nigeria, France, USA and Quebec. The protolith of this BIF is considered to be carbonate containing sediments, with high concentrations of Fe and Si but lower contents of cobalt and chromium ± Mg, Mn and Ni. During submarine weathering quartz, sheet silicate (greenalite) and Fe‐Co‐Cr (Mg‐Mn‐Ni)‐carbonate solid solution were formed. At the outset of the regional metamorphic episode grunerite, euhedral magnetite and recrystalized quartz were developed. Magnetite was grown at the expense of carbonate and later martitized under post‐metamorphic conditions. With the increasing grade of metamorphism greenalite transformed to grunerite.  相似文献   
4.
Banded iron formation (BIF) of the Gorumahisani–Sulaipat–Badampahar (GSB) belt in Singhbhum Craton, India, consists predominantly of magnetite. This BIF is intruded by a magnetite dyke. The magnetite dyke is massive and compact with minor sulphide minerals while the host banded magnetite ore, a component of the BIF, shows thin lamination. The magnetite ore of the dyke is fine to medium grained and exhibits interlocking texture with sharp grain boundaries, which is different from the banded magnetite that is medium to coarse grained and show irregular martitised and goethitised grain boundaries. Relics of Fe–Ca–Mn–Mg‐carbonate and iron silicates (grunerite and cummingtonite) are observed in the banded magnetite. The intrusive magnetite is distinctly different in minor, trace and REE geochemistry from the banded magnetite. The banded magnetite contains higher amounts of Si, Al, Mn, Ca, Mg, Sc, Ga, Nb, Zr, Hf, Co, Rb and Cu. In contrast, the massive magnetite is enriched in Cr, Zn, V, Ni, Sr, Pb, Y, Ta, Cs and U with higher abundance of HREE. In the chondrite normalized plot, the massive magnetite shows a slight positive Eu anomaly while the banded ore does not show any Eu anomaly. Field disposition, morphology, mineralogy and chemistry show that the intrusive magnetite dyke is of igneous origin, while magnetite in BIF formed from a carbonate protolith through the process of sedimentation.  相似文献   
5.
Nonlinear propagation of two dimensional dust-acoustic solitary waves in a magnetized quantum dusty plasma whose constituents are electrons, ions, and negatively charged heavy dust particles are investigated using quantum hydrodynamic model. The Zakharov-Kuznetsov (ZK) equation is derived by using reductive perturbation technique (RPT). The higher order inhomogeneous ZK-type differential equation is obtained for the correction to ZK- soliton. The dynamical equation for dressed soliton is solved by using renormalization method. The effects of obliqueness (l x ) of the wave vector, magnetic field strength (B 0), quantum parameter for ions (H i ), soliton velocity (θ) and Fermi temperature ratio (σ) on amplitudes and widths of the ZK-soliton and as well as of the dressed soliton are investigated. The conditions for the validity of the higher order correction are described. Suitable parameter ranges for the existence of compressive and rarefactive dressed solitons are also discussed.  相似文献   
6.
In opencast mining operation, the stability of waste materials stands at high priority from the safety and economic perspective. Poor management of overburden (OB) dump results the instability of slope in an opencast mine. The present paper deals with the stability analysis of dump material of an opencast coal mine at Talcher coal field, Angul district, Odisha, by means of different geotechnical parameters and mineralogical composition affecting the dump slope. The prolonged rainfall in the mining area causes dump failure and loss of valuable life and property. A recent dump failure that occurred in 2013 at Basundhara mines of Mahanadi Coalfields Limited (MCL), Odisha, took 14 lives, and created problems for the mining industry. Most of the dump failure that occurs in the study area are mainly due to increase in pore water pressure as a result of rainfall infiltration. The stability of the waste dump was investigated using the limit equilibrium analysis to suggest an economical, sustainable and safe disposal of the dump in the study area.  相似文献   
7.
The author “Bhaski Bhaskaran” and his affiliation “Fujitsu Laboratory of Europe, Middlesex, UK” should be replaced by “Balakrishnan Bhaskaran”, “Fujitsu Laboratories of Europe Limited, Hayes Park, Middlesex, UK”, respectively.The corrected name and affiliation are shown in this erratum.  相似文献   
8.
In a fluvial system, depending on sub‐aerial exposure, non‐pedogenic pond calcretes can be modified into pedogenic calcretes. The present study attempts to understand the effect of sub‐aerial exposure and pedogenesis on calcretes using carbon and oxygen isotopic composition. For this purpose, two profiles (profile‐A and profile‐B) from the same stratigraphic level in Rayka from the western part of India were selected. The profiles are separated by a distance of 500 m and showed differences in calcrete characteristics. In profile‐A, the calcretes showed pedogenic features (root traces and void filling spar) whereas calcretes in profile‐B showed non‐pedogenic characteristics (fine laminations). However, some of the calcretes in profile‐A exhibited remnants of fine laminations suggesting that initially the calcretes had a non‐pedogenic origin but were modified due to pedogenesis. In profile‐A, the carbon and oxygen isotope values of pedogenic calcrete (δ13CPC and δ18OPC) showed more variation compared with non‐pedogenic pond calcretes (δ13CSPC and δ18OSPC) in profile‐B. The δ13CPC and δ13CSPC values exhibited a spread of 3·0‰ and 1·3‰, respectively, and δ18OPC and δ18OSPC values showed a spread of 2·3‰ and 1·3‰, respectively. The differences in the isotopic composition between the two profiles suggest that pedogenesis controlled the isotopic inheritance in calcretes. In addition, the carbon isotopic composition of organic matter (δ13COM) and n‐alkanes (δ13Cn‐alk) that forms the basis of palaeovegetational reconstruction have also been measured to understand the effect of pedogenesis on organic matter in both of the profiles. The average δ13COM values in profile‐A and profile‐B are ?23·4‰ and ?21·1‰, respectively. The disparity in δ13COM values is a result of the difference in the sources and preservation of organic matter. However, the δ13Cn‐alk values show a similar trend in profile‐A and profile‐B, indicating that sources of n‐alkanes are the same in both of the profiles and δ13Cn‐alk values are unaffected by the pedogenic modifications.  相似文献   
9.
Gangavalli (Brittle) Shear Zone (Fault) near Attur, Tamil Nadu exposes nearly 50 km long and 1–3 km wide NNE–SSW trending linear belt of cataclasites and pseudotachylyte produced on charnockites of the Southern Granulite Terrane. Pseudotachylytes, as well as the country rock, bear the evidence of conjugate strike slip shearing along NNE–SSW and NW–SE directions, suggesting an N–S compression. The Gangavalli Shear Zone represents the NNE–SSW fault of the conjugate system along which a right lateral shear has produced seismic slip motion giving rise to cataclasites and pseudotachylytes. Pseudotachylytes occur as veins of varying width extending from hairline fracture fills to tens of meters in length. They carry quartz as well as feldspar clasts with sizes of few mm in diameter; the clast sizes show a modified Power law distribution with finer ones (<1000 \({\upmu }\)m\(^{2})\) deviating from linearity. The shape of the clasts shows a high degree of roundness (>0.4) due to thermal decrepitation. In a large instance, devitrification has occurred producing albitic microlites that suggest the temperature of the pseudotachylyte melt was >1000\(^{\circ }\hbox {C}\). Thus, pseudotachylyte veins act as a proxy to understand the genetic process involved in the evolution of the shear zone and its tectonic settings.  相似文献   
10.
The Central Indian Tectonic Zone (CITZ) is a major tectonic feature extending across the Indian subcontinent. It was formed in the Paleoproterozoic when the Bastar Craton and the Bundelkhand Craton were sutured together. This region is recognized in the geological record as a persistent zone of weakness with many tectonothermal events occurring over geologic time. The weakness of this region may have caused the late Cretaceous/early Tertiary Deccan volcanism to have been localized in the CITZ. The zone is still tectonically active, as evidenced by sustained levels of seismic activity. This paper presents the first systematic investigation of the resistivity structure of the CITZ using multiple magnetotelluric (MT) transects. Two-dimensional (2D) resistivity models were generated for five north–south profiles that cross the CITZ and encompass an area of ~60,000 km2. The models were based on the joint inversion of transverse electric (TE), transverse magnetic (TM) and tipper (Hz) data. All the profiles showed a low resistive (10–80 Ωm) middle to lower crust beneath the CITZ with a crustal conductance of 300–800 S. The presence of an interconnected fluid phase and/or hydrous/metallic minerals appears to be the most likely explanation for the elevated conductivity that is observed beneath the CITZ. The presence of fluids is significant because it may indicate the cause of persistent weakness at crustal depths. A northward dip of both the crustal conductive layer and coincident seismic reflections favor a northward polarity of the subduction process associated with the formation of the CITZ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号