首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
For a proper response spectrum analysis of a secondary system with multiple supports, the seismic inputs are required to be defined in terms of the auto and cross floor response spectra. If no feed-back or interaction effect from the secondary system to its supporting primary structure is suspected, these inputs can be developed by a direct analysis of the supporting structure alone. However, sometimes the effect of the interaction on the secondary system response can be quite significant. Herein, a method is developed to incorporate the feed-back effect, through proper modification of the interaction-free floor spectrum inputs. The interaction coefficients are used to effect such modifications in different floor spectral quantities. A procedure for the calculation of the interaction coefficients is proposed. The modified floor spectra when used as inputs to the secondary system do introduce the interaction effect in the secondary system response. A successful application of this method is demonstrated by numerical examples of secondary systems with three different secondary-to-primary system mass ratios.  相似文献   

2.
A method is presented for stochastic modelling of a design earthquake by a power spectral density function for seismic analysis of structures. The method can be adopted with information currently available in the form of design response spectra for earthquake motion. Accurate seismic responses of structures can be easily obtained using such stochastic models. The methods for accurate response analysis of structures with closely spaced modes and for generation of floor response spectra of a building using a prescribed ground response spectrum directly are also presented. The hypothesis that a design earthquake can be modelled by a power spectral density function is used only implicitly in developing these methods.  相似文献   

3.
The paper deals with the seismic response analysis of nonlinear secondary oscillators. Bilinear, sliding and rocking single-degree-of-freedom dynamic systems are analysed as representative of a wide spectrum of secondary structures and nonstructural components. In the first stage, the equations governing their full dynamic interaction with linear multi-degree-of-freedom primary structures are formulated, and then conveniently simplified using primary-secondary two-degree-of-freedom systems and dimensionless coefficients. In the second stage, the cascade approximation is applied, whereby the feedback action of the secondary oscillator on the primary structure is neglected. Owing to the piecewise linearity of the secondary systems being considered, efficient semi-analytical and step-by-step numerical solutions are presented. The semi-analytical solutions allow the direct evaluation of the seismic response under pulse-type ground excitations and are also used to validate step-by-step numerical schemes, which in turn can be used for general-type seismic excitations. In the third stage, a set of decoupling criteria are proposed for the pulse-type base excitations, identifying the conditions under which a cascade analysis is admissible from an engineering standpoint. Finally, the influence and relative dependencies between the input parameters of the ground motion and the primary-secondary assembly are quantified on the response of the secondary systems through nonlinear floor response spectra, and general trends are identified and discussed.  相似文献   

4.
Fundamental principles from structural dynamics, theory of random processes and perturbation techniques are used to develop a new method for seismic analysis of multiply supported secondary subsystems, such as piping attached to primary structures. The method provides a decoupled analysis of the secondary subsystem wherein the response is given in terms of response spectra associated with the attachment points (‘floors’). In order to account for correlations between modal responses and between support motions, an extension of the conventional floor response spectrum, denoted crossoscillator, cross-floor response spectrum, is introduced. Important effects of tuning, interaction, non-classical damping and spatial coupling, which are inherent characteristics of combined primary–secondary systems, are included through the extended spectra. An efficient method for generation of the extended spectra directly in terms of a ground response spectrum is developed. Numerical comparisons with exact results are used to examine the accuracy of the proposed method and to demonstrate the importance of the characteristics mentioned above. In all cases examined, the proposed method shows excellent agreement with exact results. By accounting for the effect of interaction, the proposed method leads to more realistic and economical design criteria for secondary subsystems.  相似文献   

5.
A response spectrum procedure is developed for seismic analysis of multiply supported secondary systems. The formulation is based on the random vibration analysis of structural systems subjected to correlated inputs applied at several supports. For a proper response spectrum analysis of a multiple support system, the support inputs are required to be defined in terms of the auto and cross pseudo-acceleration and relative velocity floor response spectra. Also information about the floor displacements and velocities as well as their correlations is required. The response of the secondary system is expressed as a combination of the dynamic and pseudo-static response components. The dynamic component is associated with the inertial effects of the support accelerations, whereas the pseudo-static component is due to the displacement of the supports relative to each other. Herein, the correlation between these two parts of the response is included through a term called the cross response component. Each of these components of the response can be calculated by a response spectrum method. The application of the proposed method is demonstrated by numerical examples.  相似文献   

6.
Response parameters used to estimate nonstructural damage differ depending on whether deformation‐sensitive or acceleration‐sensitive components are considered. In the latter case, seismic demand is usually represented through floor spectra, that is response spectra in terms of pseudo‐acceleration, which are calculated at the floor levels of the structure where the nonstructural components are attached to. Objective of this paper is to present a new spectrum‐to‐spectrum method for calculating floor acceleration spectra, which is able to explicitly account for epistemic uncertainties in the modal properties of the supporting structure. By using this method, effects on the spectra of possible variations from nominal values of the periods of vibration of the structure can be estimated. The method derives from the extension of closed‐form equations recently proposed by the authors to predict uniform hazard floor acceleration spectra. These equations are built to rigorously account for the input ground motion uncertainty, that is the record‐to‐record variability of the nonstructural response. In order to evaluate the proposed method, comparisons with exact spectra obtained from a standard probabilistic seismic demand analysis, as well as spectra calculated using the Eurocode 8 equation, are finally shown. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
A method is presented for generating floor response spectra for aseismic design of equipment attached to primary structures. The method accurately accounts for tuning, interaction and non-classical damping, which are inherent characteristics of composite oscillator-structure systems. Modal synthesis and perturbation techniques are used to derive the modal properties of the composite system in terms of the known properties of the structure and the oscillator. Floor spectra are generated directly in terms of these derived properties and the input ground response spectrum using modal combination rules that account for modal correlations and non-classical damping. The computed spectra, in general, are considerably lower than conventional floor response spectra due to the effect of interaction. They provide more realistic and economical criteria for design of equipment. The method is accurate to the order of perturbation and is computationally efficient, as it avoids time-history analysis and does not require numerical eigenvalue evaluation of the composite oscillator-structure system. The results of a parametric study demonstrate the accuracy of the method and illustrate several key features of floor response spectra.  相似文献   

8.
To evaluate and measure the effectiveness of active control schemes in reducing the response of structures subjected to earthquake excitations, it is common to use recorded or artificially generated earthquakes as input motions. This paper introduces the response spectrum analysis to evaluate linear control systems for seismic inputs defined by code‐prescribed or site‐specific ground response spectra. Using such a method one can evaluate a control system in a single analysis for the ensemble of time histories that are represented by the input response spectra. The response spectrum analysis can also facilitate the implementation of comprehensive parametric studies. A generalized response spectrum method is used to analyse systems with non‐symmetrical matrices that are caused by the general nature of the control actions imposed on the structure. The application of the method is demonstrated on several numerical examples of a building structure where the control force is applied through an active tuned‐mass damper. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
总结了6种半主动控制算法,采用黏滞阻尼器,对一座三跨简支梁桥进行了不同地震动输入下的半主动控制地震反应计算分析,比较分析了不同地震动输入和半主动控制算法对简支梁桥地震反应控制效果的影响。结果表明,半主动控制能有效地减小桥梁结构的大部分地震反应,同时可能会放大另外部分地震反应,这与地震动输入密切相关,不同地震动输入下的控制效果各不相同。所提六种半主动控制算法中,算法2、5、6对该简支梁桥地震反应的减震效果相对最好,这与各种算法的阻尼器耗能大小有关。  相似文献   

10.
The paper examines the effect on the structural response of the inevitable correlation which exists between the six earthquake components acting along a set of structural axes. The rotational components are expressed in terms of the spatial derivatives of the translational components. For the calculation of response, modal analysis is employed so that ground response spectra can also be used as seismic input. A methodology is developed to obtain the maximum mean square response which can occur in a structure, irrespective of its orientation with respect to the impinging seismic waves. The application of this methodology for the calculation of design response is advocated, especially for asymmetric structures. For the assumed model of seismic wave motion, the numerical results show a significant contribution to the response from the rotational components. This contribution is, however, expected to be reduced by structural foundation averaging and interaction effects. Further studies with more complete models of seismic wave motions, and their interaction with structural foundations, are thus warranted for a realistic evaluation and characterization of the rotational inputs for design purposes.  相似文献   

11.
The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.  相似文献   

12.
A simplified procedure is proposed to predict the largest peak seismic response of an asymmetric building to horizontal bi-directional ground motion, acting at an arbitrary angle of incidence. The main characteristics of the proposed procedure is as follows. (1) The properties of two independent equivalent single-degree-of-freedom models are determined according to the principal direction of the first modal response in each nonlinear stage, rather than according to the fixed axis based on the mode shape in the elastic stage; the principal direction of the first modal response in each nonlinear stage is determined based on pushover analysis results. (2) The bi-directional horizontal seismic input is simulated as identical spectra of the two horizontal components, and the contribution of each modal response is directly estimated based on the unidirectional response in the principal direction of each. (3) The drift demand at each frame is determined based on four pushover analyses considering the combination of bi-directional excitations. In the numerical example, nonlinear time-history analyses of six four-story torsionally stiff (TS) asymmetric buildings are carried out considering various directions of seismic inputs, and these results are compared with the predicted results. The results show that the proposed procedure satisfactorily predicts the largest peak response displacement at the flexible-side frame of a TS asymmetric building.  相似文献   

13.
A study of floor response spectra for a base-isolated multi-storey structure under sinusoidal and seismic ground excitations is carried out. Several base isolation systems including the laminated rubber bearing, the pure-friction, the resilient-friction, the Électricité de France and the sliding resilient-friction systems are considered. A sinusoidal ground acceleration and several earthquake accelerograms (including those of El Centro 1940, Pacoima Dam 1971 and Mexico City 1985) are used to evaluate the floor response spectra. The characteristics of the spectra generated by different base isolation systems are studied, and the results are compared with those for the fixed-base structure. It is shown that the structural contents can be protected against earthquakes by the use of properly designed base isolation systems. In particular, the laminated rubber bearing system appears to be remarkably effective in protecting the secondary systems under a variety of conditions.  相似文献   

14.
Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionality of buildings and result in significant economic losses,injuries,and casualties.In past decades,extensive studies have been conducted on the seismic performance and seismic design methods of NSCs.As the input for the seismic design of NSCs,floor response spectra(FRS)have attracted the attention of researchers worldwide.This paper presents a state-of-the-art review of FRS.Different methods for generating FRS are summarized and compared with those in current seismic design codes.A detailed review of the parameters influencing the FRS is presented.These parameters include the characteristics of ground motion excitation,supporting building and NSCs.The floor acceleration response and the FRS obtained from experimental studies and field observations during earthquakes are also discussed.Three RC frames are used in a case study to compare the peak floor acceleration(PFA)and FRS calculated from time history analyses(THA)with that generated using current seismic design codes and different methods in the literature.Major knowledge gaps are identified,including uncertainties associated with developing FRS,FRS generation methods for different types of buildings,the need for comprehensive studies on absolute acceleration,relative velocity,and relative displacement FRS,and the calibration of FRS by field observations during earthquakes.  相似文献   

15.
高层建筑时程分析中地震动时程选择和修改方法研究   总被引:2,自引:1,他引:1  
合理的地震动时程选择与修改方法对于高层结构的抗震设计具有重要意义,有着广泛的工程应用.本文回顾了建筑抗震设计规范对于输入地震动时程的规定,通过对现有的地震动时程选择与修改方法进行分类和定性分析,挑选了两种与规范要求衔接较好的方法.结合具体算例对两种方法进行了定量分析,结果表明以安评设计谱作为选择指标,利用最小二乘法对选择的地震动时程进行修改,可以得到离散较小且符合规范要求的地震动时程,该成果能够在现行规范要求下为结构的抗震设计提供合理可靠的依据.同时,本文也对未来地震动时程选择与修改方法的研究和发展方向进行了展望,指出条件均值谱和非弹性反应谱将是该领域未来主要的研究方向.  相似文献   

16.
Energy input spectra applicable to the seismic design of structures in moderate-to-high seismicity regions are proposed. Such design inputs are derived from the bilinear envelope of individual spectra obtained for 144 ground motions recorded in Colombia. In the short period region the spectra account for the increase of input energy, due to plastification of the structure, through a new formula derived from extensive nonlinear analyses. The proposed energy input design spectra are compared with the provisions of the Colombian seismic code, and with those proposed for Japan, Spain, Iran and Greece. It is found that the proposed spectra are more demanding than the current Colombian seismic code, and that they agree with those developed recently for six cities in Greece, yet applying a different approach. An empirical equation for estimating the portion of the total seismic input energy that contributes to structural damage is also developed.  相似文献   

17.
现阶段基于性能的抗震设计思想不仅关注结构自身体系的安全,而且保护非结构构件在地震作用下使用功能完好。对于工业建筑结构,生产设备在地震作用下受损会影响震后功能恢复。加速度敏感型非结构构件一般采用楼层加速度指标来量化其地震损伤程度。以三个不同高度的钢抗弯框架规则结构体系为研究对象,采用与竖向目标谱匹配的近断层非脉冲和脉冲地震动作为竖向地震输入,考察不同质量不规则程度下,楼层竖向绝对加速度随建筑高度的变化趋势,并从反应谱角度分析不规则质量分布对楼层加速度响应的影响。结果表明:4层结构在非脉冲地震作用下楼层顶层处竖向绝对加速度是地面竖向峰值加速度的5倍之多,某一层质量的突变会引起该层及其他楼层竖向绝对加速度的明显变化。另外,对现有计算楼层竖向加速度响应的经验公式进行验证,发现美国ASCE 7-16规范的估计结果偏于保守。  相似文献   

18.
A method is presented to obtain the exact complex-valued eigenproperties of a classically damped structure and equipment system. The non-classically damped character of the combined system as well as the effect of dynamic interaction between primary structure and equipment are properly included in the calculation of these eigenproperties. It is necessary only to know the classical modal properties of the structure and, of course, the equipment characteristics. The eigenvalues are obtained as the solution of a non-linear equation which can be easily solved by the Newton–Raphson algorithm. Once the eigenvalues are known, the corresponding eigenvectors are obtained from simple closed-form expressions. The method can be used equally effectively with light as well as heavy equipment. Numerical results demonstrating the effectiveness of the method are presented. A procedure which utilizes the complex-valued eigenproperties is developed for calculating the floor response spectra directly from the ground spectra. Numerical results of floor response spectra obtained from this procedure are presented. The floor spectra calculated by this approach include the structure–equipment interaction effect.  相似文献   

19.
Modern engineering design methods require ground motion time histories as input for non-linear dynamic structural analysis. Non-linear dynamic methods of analysis are increasingly applied in the context of probabilistic risk assessments and for cost-effective design of critical infrastructures. In current engineering practice artificial time histories matching deterministic design spectra or probabilistic uniform hazard spectra are most frequently used for engineering analysis. The intermediate step of generation of response spectra can lead to a biased estimate of the potential damage from earthquakes because of insufficient consideration of the true energy content and strong motion duration of earthquakes. Thus, assessment of seismic risk may seem unrealistic. An engineering approach to the development of three-component ground motion time histories has been established which enables consideration of the typical characteristics of seismic sources, regional ground motion attenuation, and the main geotechnical characteristics of the target site. Therefore, the approach is suitable for use in scenario-based risk analysis a larger number of time histories are required for representation of the seismic hazard. Near-field effects are implemented in the stochastic source model using engineering approximations. The approach is suggested for use in areas of low seismicity where ground motion records of larger earthquakes are not available. Uncertainty analysis indicates that ground motions generated by individual earthquakes are well constrained and that the usual lognormal model is not the best choice for predicting the upper tail of the distribution of the ground motions.  相似文献   

20.
The vertical response of suspension bridges to multi-support seismic excitations is investigated. A frequency-domain random-vibration approach is utilized to take into account not only the differences in ground motion inputs, but also the correlation among the various input motions. The earthquake response of the Golden Gate Suspension Bridge, California, is analysed. The ground motion inputs were taken from an array of time histories recovered from the Imperial Valley, California, earthquake (ML = 6.6) of 15 October 1979. Mean square displacement, stress and cable tension responses are obtained. An estimation of the expected peak response is made by comparing existing methods to the results of a time-domain analysis; it was found that a peak factor of 3.5 times the r.m.s. response is a good estimate of the expected peak response for this multiple-input seismic problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号