首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
蛇绿岩地幔岩中自由SiO2的发现及其地质意义   总被引:1,自引:0,他引:1  
自由SiO_2系指石英及其同质多型物(polymorphs)柯石英、斯石英等。石英广泛分布于地壳中的各种岩石中,柯石英和斯石英只存在于超高压岩石和陨石坑中。由于石英和非饱和SiO_2的橄榄石不能共生,因此在地幔橄榄岩和超镁铁岩中不存在原生石英。最近笔者在西藏罗布莎蛇绿岩的地幔岩(方辉橄榄岩)的豆荚状铬铁矿中发现了自由SiO_2和柯石英相。根据高温高压相平衡实验资料,橄榄石、辉石这样的硅酸盐矿物在地幔深部的压力条件下可以分解成简单氧化物,如FeO(方铁矿)、MgO(方镁石)以及SiO_2(斯石英)等。由此推测,西藏蛇绿岩地幔岩中自由SiO_2可能是来自于下地幔的矿物,是地幔柱作用将其搬运到上地幔浅部。  相似文献   

3.
29Si nuclear magnetic resonance (NMR) spectroscopy was used to characterize the silica phases in a moderately-shocked Coconino sandstone from Meteor Crater, Arizona. The spectra were recorded using direct polarization, magic-angle spinning, and variable delay times in a saturation recovery pulse sequence. Resonances observed at -97.3, -107.1, -113.9 and -191.2 ppm were assigned to a densified hydrous form of amorphous silica (D phase), quartz, coesite and stishovite phases, respectively. The relative percentages were estimated as 1.7, 80.6, 16.4 and 1.3% for the D, quartz, coesite, and stishovite phases. The power-law recoveries of the magnetization for the quartz and coesite phases can be interpreted in terms of their phase geometries. Received: January 3 1997 / Revised, accepted: August 4 1997  相似文献   

4.
尹锋  陈鸣 《岩石学报》2022,38(3):901-912
撞击角砾岩是陨石撞击过程形成的特有岩石种类,是研究撞击成坑过程、陨石坑定年、矿物岩石冲击变质的理想对象。岫岩陨石坑是一个直径1800m的简单陨石坑,坑内有大量松散堆积的撞击角砾岩。本研究通过光学显微镜、费氏台、电子探针、X射线荧光光谱仪、电感耦合等离子质谱仪等分析测试手段,主要研究了岫岩陨石坑撞击角砾岩的岩相学和冲击变质特征,并在此基础上讨论了撞击角砾岩的形成过程和陨石坑的形貌特征。岫岩陨石坑内产出有三种撞击角砾岩,分别是来自上部的玄武质角砾岩和复成分岩屑角砾岩,以及底部的含熔体角砾岩。组成玄武质角砾岩和复成分岩屑角砾岩的碎屑受到的冲击程度较低,仅有少量石英发育面状变形页理,指示不超过20GPa的冲击压力。而组成含熔体角砾岩的碎屑受到了很强的冲击,发育了熔融硅酸盐玻璃、石英面状变形页理、柯石英、二氧化硅玻璃、击变长石玻璃、莱氏石等冲击变质特征,指示的峰值压力超过50GPa。本研究证实了含熔体角砾岩通常产出在简单陨石坑底部,由瞬间坑的坑缘和坑壁垮塌的岩石碎屑与坑底的冲击熔体混合形成。岫岩坑的真实深度是495m,真实深度与直径的比值为0.275,符合简单陨石坑的尺寸特征。陨石坑内的撞击角砾岩中心厚度为188m,与直径之比为0.104,略低于其它简单坑,可能是受丘陵地貌影响导致改造阶段垮塌到坑内的岩石角砾偏少。  相似文献   

5.
The textural relationships and structural states of optically isotropic labradorite from the Manicouagan, Quebec, impact structure have been examined by light (optical) and transmission electron (TEM) microscopy. Two distinct diaplectic glasses have been recognized based on their contrasting morphology, timing and the inferred modes of formation. The earliest isotropic bands and grain-scale isotropism (maskelynite) optically exhibit a gradational,in situ transformation from crystalline plagioclase with preservation of relict textures (twins, grain boundaries). The same transformation from crystalline to amorphous structure is observed in TEM to occur heterogeneously at scales on the order of the unit cell. The progressive transformation of optical properties reflects an increase in the volume fraction and eventual coalescence of these amorphous units. This maskelynite-type diaplectic glass is interpreted to form in the solid-state directly from crystalline material during the compressional phase of the shock wave. The other isotropic material occurs in spatially discrete tensiongashes and planar deformation features (PDFs) that overprint the maskelynite-type glass. This second type of diaplectic glass (PDF-type) is developed homogeneously within a given glass band and exhibits sharp crystal-glass boundaries, in contrast to the gradational boundaries of the maskelynite-type glass. PDF-type glass is interpreted to form by melting in tensional release zones during passage of the rarefaction wave. These observations emphasize the ability of naturally shocked rocks to preserve subtle evidence of variations in the shock process from highly transient events.  相似文献   

6.
The long prism/needle‐shaped polycrystalline quartz aggregates and square/parallelogram‐shaped singlephase quartz inclusions in omphacite and garnet of ultrahigh pressure eclogite were first discovered from the Jiangalesayi area, South Altyn UHP belt. Based on their morphology, these quartz inclusions are quartz paramorphs after stishovite. The minimum peak pressure of the eclogite is estimated to be >8–9 GPa at 800– 1000 °C based on the stability field of stishovite. This new evidence, together with previous stishovite exsolution microstructure in the gneiss from the same region, suggests an ultra‐deep subduction and exhumation of the South Altyn continental rocks to/from mantle depths in stishovite stability field. Evidence of ultra‐deep subduction of continental materials might be more common and diverse than previous thought. Exhumation of subducted continental rocks from≥300 km has been considered impossible because they are denser than mantle at these depths. How did the stishovite bearing continental rocks of the South Altyn exhumated? As we all know, the densities of stishovite (4.3 g/cm3) are much higher than coesite (2.9 g/cm3), and stishovite transforms into coesite with temperature increases. Density calculations were performed for subducted continental rocks along phase transition of stishovite to coesite, using the third‐order Birch‐Murnaghan equation of state based on mineral fractions obtained from experiments and Perple_X. The results show that the density of Siliceous rocks decrease remarkably, lower than the surrounding mantle in coesite stability field, whereas the density of Oligosiliceous and Silicon unsaturated rocks is higher than surrounding mantle. Thus, we propose that the thermal induced transformation could provide an initial driven force for the exhumation of ultra‐deep subducted silica‐enriched felsic continental rocks. Temperature increase could be derived from an increased geothermal gradient from convective mantle or mantle plume. Mafic to ultra‐mafic rocks and silica‐deficient rocks may be captured by the upwelling subducted continental rocks and exhumated together.  相似文献   

7.
Mineral exploration drilling 60 km west of Leonora in 2008 intersected >95 m of poorly consolidated granitoid-dominated breccia at the base of a Cenozoic paleochannel beneath Lake Raeside. The breccia, initially interpreted as a kimberlite, is composed of poorly consolidated fragments of granitic gneiss, felsite and metamorphosed mafic rock within a matrix of fine to medium-grained breccia. Microscopic examination revealed quartz grains displaying well-developed planar deformation features (PDFs) dominated by the ω? {1013} planar set, diaplectic silica glass and diaplectic plagioclase glass. These features constitute the diagnostic hallmarks of shock metamorphism owing to high-velocity impact of a large meteorite or asteroid. The PDFs in quartz grains of the breccia are distinctly different from metamorphic deformation lamellae produced tectonically or in diatremes. Airborne total magnetic intensity data suggest an outline of an 11 km-diameter crater, consistent with the significant thickness of the shock-metamorphosed breccia at >95 m, suggestive of the existence of a large impact structure.  相似文献   

8.
The origin of the Vredefort structure in South Africa is still debated. Several causes have been discussed, namely asteroid impact, internal gas explosion or tectonic processes. Evidence of dynamic rock deformation is pervasive in the form of planar features in quartz grains, shatter cones, veins of pseudotachylite and occurrence of coesite and stishovite (high-pressure quartz polymorphs). A number of these characteristics is widely believed to support an impact origin. However, the planar features in quartz, which are generally considered as one of the strongest indicators of impact, are in the Vredefort case considered as anomalous when compared with those from accepted impact structures.

We have investigated by optical and transmission electron microscopy (TEM) the defect microstructures in quartz grains from different lithologies sampled at various places at the Vredefort structure. Whatever the locality, only thin mechanical Brazil twin lamellae in the basal plane are observed by TEM. So far, such defects have only been found in quartz from impact sites, but always associated with sets of thin glass lamellae in rhombohedral planes 10−1n with n = 1, 2, 3, and 4. At the scale of the optical microscope, Brazil twins in (0001) are easily detected in Vredefort quartz grains because of the numerous tiny fluid inclusions which decorate them. Similar alignments of tiny fluid inclusions parallel to other planes are also detected optically, but at the TEM scale no specific shock defects are detected along their traces. If these inclusion alignments initially were shock features, they are now so severely weathered that they can no longer be recognized as unambiguous shock lamellae. Fine-grained coesite was detected in the vicinity of narrow pseudotachylite veinlets in a quartzite specimen, but stishovite was not found, even in areas where its occurrence was previously reported. Finally, definite evidence of high-temperature annealing was observed in all the samples. These observations lead us to the conclusion that our findings regarding microdeformation in quartz are consistent with an impact origin for the Vredefort structure. Most of the original shock defects are now overprinted by an intense post-shock annealing episode. Only the thin mechanical twin lamellae in the basal plane have survived.  相似文献   


9.
The intergrowth of diaplectic glass and primitive anorthite has been observed in fragments shocked to 300 kbar. The textures observed by electron microscopy are similar to those produced in shocked quartz crystals. The diffuseness of reflections, related to antiphase domains, show no noticeable change in comparison with unshocked specimens. These results indicate that no gradual change in original domain size occurs and that the transformation of primitive anorthite to diaplectic glass occurs abruptly.  相似文献   

10.
Submicroscopic opaque particles from highly shocked granite-gneisses close to the core of the Vredefort impact structure have been investigated by means of micro-analytical techniques with high spatial resolution such as electron diffraction, orientation contrast imagery and magnetic force microscopy. The opaque particles have been identified as nano- to micro-sized magnetite that occur in several distinct modes. In one sample magnetite occurs along relict planar deformation features (PDFs) in quartz, generally accepted as typical shock lamellae. The magnetite particles along shock lamellae in quartz grains virtually all show uniform crystallographic orientations. In most instances, the groups of magnetite within different quartz grains are systematically misorientated such that they share a subparallel <101> direction. The magnetite groups of all measured quartz grains thus appear to have a crystallographic preferred orientation in space. In a second sample, orientations of magnetite particles have been measured in microfractures (non-diagnostic of shock) of quartz, albite and in the alteration halos, (e.g. biotite grains breaking down to chlorite). The crystallographic orientations of magnetite particles are diverse, with only a minor portion having a preferred orientation. Scanning electron microscopy shows that magnetite along the relict PDFs is invariably associated with other microcrystalline phases such as quartz, K-feldspar and biotite. Petrographic observations suggest that these microcrystalline phases crystallized from locally formed micro-melts that intruded zones of weakness such as microfractures and PDFs shortly after the shock event. The extremely narrow widths of the PDFs suggest that heat may have dissipated rapidly resulting in melts crystallizing relatively close to where they were generated. Magnetic force microscopy confirms the presence of magnetic particles along PDFs. The smallest particles, <5 μm with high aspect ratios 15:1 usually exhibit intense, uniform magnetic signals characteristic of single-domain magnetite. Consistent offsets between attractive and repulsive magnetic signals of individual single-domain particles suggest consistent directions of magnetization for a large proportion of particles. Received: 16 November 1998 / Accepted: 17 May 1999  相似文献   

11.
Samples of single crystal calcic plagioclase (labradorite, An63, from Chihuahua, Mexico) have been shock-loaded to pressures up to 496 kbar. Optical and electron microscopic studies of the recovered samples show the effects of increasing shock pressures on this mineral. At pressures up to 287 kbar, the recovered specimens are still essentially crystalline, with only a trace amount of optically unresolvable glass present at 287 kbar. Samples recovered after shock-loading to pressures between 300 and 400 kbar are almost 100% diaplectic glasses; that is formed by shock transformation presumably in the solid-state. Above about 400 kbar, glasses with refractive indices similar to thermally fused glass were produced. The general behavior of the index of refraction with shock pressures agrees closely with previous work, however, the absence of planar features is striking. At pressures less than 300 kbar, the most prominent physical feature is the pervasive irregular fracturing caused by the shock crushing, although some (001) and (010) cleavages are observed. No fine-scale shock deformation structures, i.e. planar features, were noted in any of the specimens. We conclude, in contrast to previous studies of shocked rocks that planar features are not necessarily definitive shock indicators, in contrast to diaplectic glass (e.g., maskelynite) and high-pressure phases, but are rather likely indicative of the local heterogeneous dynamic stress experienced by plagioclase grains within shocked rocks.  相似文献   

12.
Cordierite–quartz and plagioclase–quartz intergrowths in a paragneiss from northern Labrador (the Tasiuyak Gneiss) were studied using SEM, STEM and TEM. The gneiss experienced granulite facies conditions and partial melting during both regional and, subsequently, during contact metamorphism. The microstructures examined all results from the contact metamorphism. Cordierite–quartz intergrowths occur on coarse and fine scales. The former sometimes exist as a ‘geometric’ intergrowth in which the interface between cordierite and quartz appears planar at the resolution of the optical microscope and SEM. The latter exists in several microstructural variants. Plagioclase is present as a minor component of the intergrowth in some examples of both the coarse and fine intergrowth. Grain boundaries in cordierite–quartz intergrowths are occupied by amorphous material or a mixture of amorphous material and chlorite. Cordierite and quartz are terminated by crystal faces in contact with amorphous material. Chlorite is sometimes found on cordierite surfaces and penetrating into cordierite grains along defects. Quartz contains (former) fluid inclusions 10–20 nm in maximum dimension. The presence of planar interfaces between cordierite and the amorphous phase is reminiscent of those between crystals and glass in volcanic rocks, but in the absence of compelling evidence that the amorphous material represents former melt, it is interpreted as a reaction product of cordierite. Plagioclase–quartz intergrowths occur in a number of microstructural variants and are commonly associated with cordierite–quartz intergrowths. The plagioclase–quartz intergrowths display simple, non‐planar interfaces between plagioclase and quartz. Quartz contains (former) fluid inclusions of dimensions similar to those observed in cordierite–quartz intergrowths. The boundary between quartz and enclosing K‐feldspar is cuspate, with quartz cusps penetrating a few tens of nanometres into K‐feldspar, commonly along defects in K‐feldspar and sometimes with very low dihedral angles at their tips. This cuspate microstructure is interpreted as melt pseudomorphs. The plagioclase–quartz intergrowths share some features with myrmekite, but differ in some respects: the composition of the plagioclase (An37Ab62Or1–An38Ab61Or1); the association with cordierite–quartz intergrowths; and microstructures that are atypical of myrmekite (e.g. quartz vermicules shared with cordierite–quartz intergrowths). It is inferred that the plagioclase–quartz intergrowths may have formed from, or in the presence of, melt. Inferred melt‐related microstructures preserved on the nanometre scale suggest that melt on grain boundaries was more pervasive than is evident from light optical and SEM observations.  相似文献   

13.
Raman spectra of the two high-pressure polymorphs of SiO2 (coesite and stishovite) were investigated in the temperature range 105–875 K at atmospheric pressure. Coesite remained intact after the highest temperature run, but stishovite became amorphous at temperatures above about 842~872 K. Most Raman modes exhibit a negative frequency shift with temperature for these polymorphs, but positive trends were also observed for some modes. Except for some weak modes, nonlinear temperature variation were established for these polymorphs within the experimental uncertainty and temperature range spanned. The slopes of the variation (δvi/δT)P for these polymorphs were compared with the published values. When compared with quartz and stishovite, the four-membered rings of SiO4-tetrahedra in coesite exhibit very little change with both temperature and pressure. It is also suggested that temperature and pressure should have opposite effects on the Raman shift of each vibrational mode.  相似文献   

14.
Crystalline rocks from breccias of the Ries basin, Germany, contain highly deformed quartz. Various planar deformation structures could be observed and classified into five different types: (1) Decorated planar elements, (2) Non-decorated planar elements, (3) Homogeneous lamellae, (4) Filled lamellae, (5) Planar fractures. All these structures are parallel to crystallographic planes: {10¯13}, {10¯12}, {10¯11}, {0001},{11¯21}, {11¯22}, {21¯31}, {51¯61}, {10¯10}. The most typical and most abundant planar structures are decorated and nondecorated planar elements parallel to {10¯13} and {10¯12}. Planar fractures are parallel to {0001} and {10¯11} and form at lower stress levels, probably earlier than the planar elements.Quartz containing planar elements, especially of the non-decorated type, has lower density, index of refraction and birefringence than normal quartz. This quartz is apparently a mixture of an amorphous phase and crystalline quartz, the amount of which can be calculated using average density or refractive index.Comparison of planar quartz structures found in tectonites and those produced artificially under static or dynamic high pressure conditions demonstrates that Ries quartz closely resembles deformed quartz recovered from shock wave experiments. The planar structures found in Ries quartz have been formed by shock wave actions with peak pressures in the 100–400 kbar range.Planar elements are explained to be traces of gliding processes during shock loading visible due to the fact that a high pressure phase (stishovite and/or a stishovite-like glass phase) has been produced along the glide planes. Upon pressure release most of the high pressure phase was transformed into an SiO2-glass (diaplectic glass).In comparison with experimental data the amount of residual crystalline quartz as well as type and orientation of planar structures in the quartz grains are clues to estimate the peak pressures responsible for these deformations. Shock waves with peak pressures exceeding about 400 kbar completely transform quartz into diaplectic SiO2-glass.  相似文献   

15.
杨建军 《岩石学报》2015,31(9):2465-2476
近六十多年来,关于造山带高压变质作用发生的原因一直存在争议。当前的主流观点认为高压变质岩形成于俯冲带深部以后折返到地壳。虽然早就认识到蓝片岩相变质作用总是与逆冲断裂相伴并且变质压力朝着冲断面增高,而标志地震的榴辉岩相假玄武玻璃也已经发现了二十多年,但是一般认为断裂或剪切带的作用只是引进流体促进深部岩石的变质反应。几年前,苏文辉等人(Su et al.,2006)通过实验演示了石英经过非晶化可以在柯石英稳定的压力下迅速转变为柯石英,提出无需深俯冲,浅源地震即可形成柯石英。本文介绍笔者等人对中国苏鲁超高压变质带仰口榴辉岩的部分工作结果,从地质观察角度为这一论点提供证据。例如,粒间柯石英仅出现在榴辉岩相角砾岩的角砾而非胶结物中,它必须在相当于地震的时间尺度快速降压冷却才能得以保存。变辉长岩中的榴辉岩相碎裂岩脉也记录了应力导致的瞬时高压和高温。角砾岩和碎裂岩中包含大量高压矿物的石榴石和针状蓝晶石以及局部出现的"显微花岗岩"都是类似地震熔体淬火的结果。它们指示震后高压矿物没有再生长。而如果地震发生在深部,流体浸入后矿物应当在高压下持续结晶,从而消除淬火结构。碎裂岩脉中星散的铬铁矿微粒极可能是附近超镁铁岩通过断裂迸溅进入基性岩的,是地震中不同岩石机械混合的证据;环绕它们的富铬榴辉岩矿物记录着一次无可争议的瞬时高压结晶事件。碎裂岩脉相对围岩更缺乏流体的事实反映应力而非流体在高压相变中的关键作用。榴辉岩相角砾岩和碎裂岩脉形成的时间尺度太小,来不及完成俯冲和折返过程。它们更可能是辉长岩在地壳原地因地震波引起的高压发生了榴辉岩化作用。目前的地震力学模型不能导出高压相变所需要的压力,只是因为建立模型时没有考虑涉及高压相变的地震。需要强调的是,假说或理论需要观察事实的检验而不是相反。已有资料显示,瞬时熔融和非晶化可能是震击高压相变的路径。  相似文献   

16.
17.
To understand the preservation of coesite inclusions in ultrahigh‐pressure (UHP) metamorphic rocks, an integrated petrological, Raman spectroscopic and focussed ion beam (FIB) system–transmission electron microscope (TEM) study was performed on a UHP kyanite eclogite from the Sulu belt in eastern China. Coesite grains have been observed only as rare inclusions in kyanite from the outer segment of garnet and in the matrix. Raman mapping analysis shows that a coesite inclusion in kyanite from the garnet rim records an anisotropic residual stress and retains a maximum residual pressure of ~0.35 GPa. TEM observations show quartz is absent from the coesite inclusion–host kyanite grain boundaries. Numerous dislocations and sub‐grain boundaries are present in the kyanite, but dislocations are not confirmed in the coesite. In particular, dislocations concentrate in the kyanite adjacent to the boundary with the coesite inclusion, and they form a dislocation concentration zone with a dislocation density of ~109 cm?2. A high‐resolution TEM image and a fast Fourier transform‐filtered image reveal that a tiny dislocation in the dislocation concentration zone is composed of multiple edge dislocations. The estimated dislocation density in most of the kyanite away from the coesite inclusion–host kyanite grain boundaries is ~108 cm?2, being lower than that in kyanite adjacent to the coesite. In the case of a coesite inclusion in a matrix kyanite, using Raman and TEM analyses, we could not identify any quartz at the grain boundaries. Dislocations are not observed in the coesite, but numerous dislocations and stacking faults are developed in the kyanite. The estimated overall dislocation density in the coesite‐bearing matrix kyanite is ~108 cm?2, but a high dislocation density region of ~109 cm?2 is also present near the coesite inclusion–host kyanite grain boundaries. Inclusion and matrix kyanite grains with no coesite have dislocation densities of ≤108 cm?2. Dislocation density is generally reduced during an annealing process, but our results show that not all dislocations in the kyanite have recovered uniformly during exhumation of the UHP rocks. Hence, one of the key factors acting as a buffer to inhibit the coesite to quartz transformation is the mechanical interaction between the host and the inclusion that lead to the formation of dislocations in the kyanite. The kyanite acts as an excellent pressure container that can preserve coesite during the decompression of rocks from UHP conditions. The search for and study of inclusions in kyanite may be a more suitable approach for tracing the spatial distribution of UHP metamorphic rocks.  相似文献   

18.
Shock experiments on quartz single crystals with initial temperatures –170 to +1000°C showed that ambient temperature does not affect the type of defects formed but can lower the pressure of complete amorphization. The amount of glass recovered increases with both pressure and temperature, and the shock-induced phase transformation of quartz is temperature-activated with an apparent activation energy of <60 kj/=" mol.=" the=" phase=" transformation=" is=" localized=" along=" three=" types=" of=" transformation=" lamellae=" (narrow,=" s-shaped,=" and=" wide)=" which=" contain=" fractured=" and/or=" high-pressure=" phases.=" transformation=" lamellae=" are=" inferred=" to=" form=" by=" motion=" of=" linear=" collapse=" zones=" propagating=" near=" the=" shock=" front.=" equilibrium=" phases,=" such=" as=" stishovite,=" were=" not=" recovered=" and=" are=" probably=" not=" formed=" at=" high=" shock=" pressures:=" the=" dominant=" transformation=" mechanism=" is=" inferred=" to=" be=" solid-state=" collapse=" to=" a=" dense,=" disordered=" phase.=" melting=" occurs=" separately=" by=" friction=" along=" microfaults,=" but=" no=" high-pressure=" crystal=" phases=" are=" quenched=" in=" these=" zones.=" shock=" of=" quartz=" thus=" produces=" two=" types=" of=" disordered=" material,=" quenched=" melt=" (along=" microfaults)=" and=" diaplectic=" glass=" (in=" transformation=" lamellae);=" the=" quenched=" melt=" expands=" during=" p-t=" release,=" leaving=" it=" with=" a=" density=" lower=" than=" quartz,=" while=" recovered=" diaplectic=" glass=" has=" a=" density=" closer=" to=" that=" of=" quartz.=" at=" low=" pressures=">< 15=" gpa),=" quartz=" transforms=" mostly=" by=" shear=" melting,=" while=" at=" higher=" pressures=" it=" converts=" mostly=" along=" transformation=" lamellae.=" we=" find=" that=" shock=" paleopiezometers=" using=" microstructures=" are=" nominally=" temperature-invariant,=" so=" that=" features=" observed=" at=" impact=" craters=" and=" the=" k/t=" boundary=" require=" in=" excess=" of=" 10=" gpa=" to=" form,=" regardless=" of=" the=" target=" temperature.=" shock=" comminution=" will=" be=" much=" more=" extensive=" for=" impacts=" on=" cold=" surfaces=" due=" to=" lack=" of=" cementation=" of=" fragments=" by=" melt=" glass;=" shock=" on=" hot=" surfaces=" could=" produce=" much=" more=" glass=" than=" estimated=" from=" room-temperature=" experiments.=" because=" of=" the=" shock-impedance=" mismatch=" between=" quartz=" specimen=" and=" steel=" capsule,=" the=" incident=" shock=" wave=" reverberates=" up=" to=" a=" final=" pressure.=" the=" dynamic=" compression=" process=" is=" quasi-isentropic=" with=" high=" strain=" rates.=" preheating=" and=" precooling=" achieves=" final=" shock=" pressures=" and=" temperatures=" representative=" of=" single-shock=" states=" of=" room=" temperature=" quartz=" and=" of=" quartz=" on=" known=" planetary=" surfaces.=" stress=" histories=" were=" calculated=" by=" detailed=" 1-=" and=" 2-dimensional=" computer=" simulations.=" the=" stress=" history=" throughout=" the=" sample=" is=" relatively=" uniform,=" with=" minor=" variations=" during=" unloading.=" significant=" differences=" between=" impact=" pressures=" calculated=" by=" the=" shock-impedance-match=" method=" and=" specimen=" pressures=" calculated=" by=" computer=" simulations=" indicate=" the=" importance=" of=" modeling=" shock=" recovery=" experiments=">  相似文献   

19.
One unshocked and 9 naturally shocked single quartz crystal grains with 1–6 sets of shock lamellae from the Ries, West Germany, and the Lake Lappajärvi, Finland, covering a range from unshocked quartz withNo = 1.544 to nearly completely glassy quartz withNo = 1.461 have been used for X-ray precession and Laue investigations. Four of the shocked grains have preliminarily been studied under a transmission electron microscope. It is found that quartz havingNo less than 1.539 shows intensive anisotropic cell expansion and lattice disordering which gradually increase asNo decreases. Shock-induced lattice distortion of quartz is clearly shown on both precession and Laue photographs. For the weakly shocked quartz (p < 200 kb) slight to pronounced spreading of spots is observed. When the pressure reaches 200 kb, both concentric spreading of spots having long ‘tails’ and concentric rings (powder pattern) are revealed on the same photograph, which means that besides a part of single crystal there also exist randomly oriented tiny ‘fragments’ of quartz in this shocked quartz grain. As pressure increases from 230 to 315 kb, more and more crystalline puases in the quartz grains have transformed from solid state into silica glass, and the concentric rings and the long ‘tails’ disappear and the spot spreading becomes slight again, but reflection intensities become much lower in comparison with those of weakly shocked quartz. TEM investigations show three kinds of substructures of shock lamellae. The glass contents of two of the four grains (73% and 84% respectively) were measured on TEM photographs with the help of an image analysis system. On the basis of above investigations a six-terminal-state model for the mechanism of deformation in shock metamorphosed quartz is presented.  相似文献   

20.
Hypotheses proposed to explain the origin of pseudotachylite bodies formed during impact cratering include: (1) frictional heating, (2) shock loading, (3) decompression or (4) drainage of impact melt into target rocks. In order to differentiate among these processes, we conducted detailed geochemical and petrographic analysis of the matrices in pseudotachylitic veins and dikes and of their respective wall rocks. Our analyses indicate that the chemical compositions of matrices locally deviate significantly from their immediate wall rocks and that assimilation of wall rock has substantially modified the pseudotachylite matrix compositions in places. Variable magnitudes of assimilation can be explained by the surface area of wall rock or its fragments in contact with melt, as well as the initial temperature and cooling rate of the pseudotachylitic melt. Chemical trends observed can be explained either by admixture of an exotic melt component with immediate wall rock or by mixing of melts derived from local lithologies. Trends in the compositional deviation of centimetre to metre-wide pseudotachylite dikes from their immediate wall rocks are consistent with the presence of a primary melt component having granitoid composition akin to the average composition of Vredefort Granophyre dikes. Within veins, melt transport can be geochemically and petrographically traced for distances of centimetres to metres, with the direction of melt transport from larger pseudotachylite veins toward smaller ones and into apophyses. Sulphide and silicate mineralogy indicates that the initial temperature of pseudotachylitic melt must have been at least 1200-1700 °C. Collectively, these characteristics point to an allochthonous origin of pseudotachylitic melt. We advocate the possibility that impact melt from the initially superheated impact melt sheet contributed to the formation of pseudotachylite bodies at Vredefort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号