首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A simple mapping finite element method is used to calculate the coupled natural frequencies and mode shapes of realistic arch dam reservoir systems in which the dam is circular cylindrical with non-uniform cross-section. This method, in which both the dam and the reservoir domains are mapped into geometrically simpler shapes using cylindrical-polar transformations, is found to give accurate results, achieved simply and economically. Results of analysis show that hydrodynamic interaction has a substantial effect on the coupled natural frequencies and mode shapes; also that the effect of water compressibility in the type of dams considered can be ignored without significant loss of accuracy. A simple method is also presented for predicting the water compressibility effect before undertaking detailed response analysis.  相似文献   

2.
Ambient vibration tests were conducted on a 56 metre high concrete gravity dam to measure its modal properties for validating a finite element model of the dam–reservoir–foundation system. Excitation was provided by wind, by reservoir water cascading down the spillweir, and by the force of water released through outlet-pipes. Vibrations of the dam were measured using accelerometers, and 3-hour data records were acquired from each location. Data were processed by testing for stationarity and rejecting non-stationary portions before Fourier analysis. Power spectra with low variance were generated from which natural frequencies of the dam were identified clearly and modal damping factors estimated. Modal analysis of the frequency response spectra yielded mode shapes for the six lowest lateral modes of vibration of the dam. The finite element model for the dam was analysed using EACD-3D, and the computed mode shapes and natural frequencies compared well with the measured results. The study demonstrates that ambient vibration testing can offer a viable alternative to forced vibration testing when only the modal properties of a dam are required. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Dynamic tests were conducted on a 50 m high intake tower at Wimbleball dam in the U.K. The results were compared against predictions from a corresponding numerical model. The aim of this work was to validate the assumption that the compressibility of the reservoir water is not a significant factor in the seismic analysis of intake towers. Three sets of tests were conducted on different occasions with different water levels in the reservoir. In the first two tests, modal characteristics of the tower were determined from the measured responses under ambient, hammer and human excitation. These results were used in planning the final set of tests where rotating eccentric mass exciters were used to vibrate the tower. Structural accelerations and hydrodynamic pressures were measured over the height of the tower for three important bending modes of vibration. The finite element method was used to develop a numerical model for Wimbleball tower. The tower was discretized with traditional solid elements and the reservoir with incompressible fluid elements. This model was analysed to predict the modal characteristics and harmonic responses of the tower and reservoir under the various conditions imposed during the dynamic tests. Theoretical predictions of the tower's accelerations and hydrodynamic pressures in the reservoir were compared against the test results. Excellent agreement was found for the natural frequencies and mode shapes while predictions of the harmonic responses were only fair. The observed responses of the tower and reservoir support the assumption that reservoir compressibility is not a significant factor in the seismic analysis of towers of this size.  相似文献   

4.
A reservoir of water is contained by a concrete valley block, a ferrocement wall and a steel plate. Both wall and plate contain an array of pressure transducer sockets (Figures 1 and 2). Using the M.A.M.A.1 equipment pure modes of vibration are excited. Frequency and mode shape are measured with the reservoir empty. When the reservoir is full hydrodynamic pressure is also measured. These hydrodynamic pressures are compared with Chopra's2 two-dimensional, series solution, which includes compressibility of water, and with two- and three-dimensional finite element solutions of Laplace's equation, which do not include compressibility. Chopra's solution is unsatisfactory for modes which contain a vertical node line. The best agreement between experimental and theoretical hydrodynamic pressure is obtained when the latter is obtained from three-dimensional solutions of Laplace's equations, indicating that compressibility does not play a significant rǒle. This conclusion is supported by agreement between experimental frequencies (reservoir full) and those calculated using added mass obtained from the Laplace solution. Similar conclusions were reached from tests on a floating steel plate, suspended in the surface of the reservoir by a soft spring. Here, dynamic pressure measurements were not made, reliance being placed on agreement between calculated and measured frequencies and mode shapes.  相似文献   

5.
The need for full‐scale dynamic tests, which are recognized as the most reliable method to evaluate a structure's vibration properties, is increasing as new analysis techniques are developed that take into account the complex interaction phenomenons that occur in dam–reservoir–foundation systems. They are extremely useful to obtain reliable data for the calibration of newly developed numerical methods. The Earthquake Engineering and Structural Dynamics Research Center (CRGP) at the University of Sherbrooke has been developing and applying dynamic testing methods for large structures in the past 10 years. This paper presents the experimental evaluation of the effects of the varying water level on the dynamic response of the 180 m Emosson arch dam in Switzerland. Repeated forced‐vibration tests were carried out on the dam during four different periods of the reservoir's filling cycle during a one‐year span. Acceleration and hydrodynamic pressure frequency responses were obtained at several locations while the dam was subjected to horizontal harmonic loading. The variation of the resonant frequencies as a function of the reservoir level is investigated. A summary of the ongoing numerical correlation phase with a three‐dimensional finite element model for the dam–reservoir–foundation system is also presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
混凝土重力坝整体动力特性研究   总被引:1,自引:0,他引:1  
结合金安桥混凝土重力坝工程的抗震性能研究,对大坝按整体模型和分缝模型分别进行了动力试验。试验中考虑了横缝和动水压力的影响,得到了整个坝体空库、满库时的空间动力特性。并对大坝进行了三维有限元动力分析,与模型试验结果进行了比较,两者符合得较好。  相似文献   

7.
Dynamic response of dams is significantly influenced by foundation stiffness and dam-foundation interaction. This in turn, significantly effects the generation of hydrodynamic pressures on upstream face of a concrete dam due to inertia of reservoir water. This paper aims at investigating the dynamic response of dams on soil foundation using dynamic centrifuge modelling technique. From a series of centrifuge tests performed on model dams with varying stiffness and foundation conditions, significant co-relation was observed between the dynamic response of dams and the hydrodynamic pressures developed on their upstream faces. The vertical bearing pressures exerted by the concrete dam during shaking were measured using miniature earth pressure cells. These reveal the dynamic changes of earth pressures and changes in rocking behaviour of the concrete dam as the earthquake loading progresses. Pore water pressures were measured below the dam and in the free-field below the reservoir. Analysis of this data provides insights into the cyclic shear stresses and strains generated below concrete dams during earthquakes. In addition, the sliding and rocking movement of the dam and its settlement into the soil below are discussed.  相似文献   

8.
The purpose of this study is to investigate the effect of retrofitting dynamic characteristics of a damaged laboratory arch dam model, subsequently repaired with high-strength structural mortar and strengthened with composite carbon fiber reinforced polymer. This study constructed in laboratory conditions is a prototype arch dam–reservoir–foundation model. Five test cases of ambient vibration on the arch dam model illustrate the changes in dynamic characteristics: natural frequency, mode shape, and damping ratio, before and after retrofitting. The ambient vibration tests collected data from the dam body during vibrations by natural excitations which provided small impacts and response signals from sensitivity accelerometers placed at crest points. Enhanced Frequency Domain Decomposition Method in the frequency domain extracts the experimental dynamic characteristics. At the end of the study, experimentally identified dynamic characteristics obtained from all test cases have been compared with each other. Apparently, after the retrofitting, the natural frequencies of the dam body increased considerably, demonstrating that the retrofitting, including repairing and strengthening is very effective on the flashback of initial dynamic characteristics.  相似文献   

9.
Forced vibration field tests and finite-element studies were conducted on the Shahid Rajaee concrete arch dam in Northern Iran to determine the dynamic properties of the dam–reservoir–foundation system. The first forced vibration tests on the dam were performed with two different types of exciter units, with a limited maximum force, bolted on the dam crest for alternative in-phase and out-of-phase sequencing. Because of an insufficient number of recording sensors, two arrangements of sensors were used to cover sufficient points on the dam crest and one gallery during tests. Two kinds of vibration tests, on–off and frequency sweeping, were carried out on the dam. The primary natural frequencies of the coupled system for both symmetric and anti-symmetric vibration modes were approximated during on–off tests in two types of sequencing of exciters, in phase and out-of-phase, with a maximum frequency of 14 Hz. The principal forced vibration tests were performed at precise resonant frequencies based on the results of the on–off tests in which sweeping around the approximated frequencies at 0.1 Hz increments was performed. Baseline correction and suitable bandpass filtering were applied to the test records and then signal processing was carried out to compute the auto power, cross power and coherence spectra. Nine middle modes of vibration of the coupled system and corresponding damping ratios were estimated. The empirical results are compared against the results from calibrated finite-element modeling of the system using former ambient vibration tests, considering the dam–reservoir–foundation interaction effects. Good agreement is obtained between experimental and numerical results for eight middle modes of the dam–reservoir–foundation system.  相似文献   

10.

Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential role in realtime structural health monitoring, has become a popular topic in recent years. In this study, an automatic modal parameter identification procedure for high arch dams is proposed. The proposed procedure is implemented by combining the density-based spatial clustering of applications with noise (DBSCAN) algorithm and the stochastic subspace identification (SSI). The 210-m-high Dagangshan Dam is investigated as an example to verify the feasibility of the procedure. The results show that the DBSCAN algorithm is robust enough to interpret the stabilization diagram from SSI and may avoid outline modes. This leads to the proposed procedure obtaining a better performance than the partitioned clustering and hierarchical clustering algorithms. In addition, the errors of the identified frequencies of the arch dam are within 4%, and the identified mode shapes are in agreement with those obtained from the finite element model, which implies that the proposed procedure is accurate enough to use in modal parameter identification. The procedure is feasible for online modal parameter identification and modal tracking of arch dams.

  相似文献   

11.
Measurements have been made of vibrations induced in the 180 m high Emosson arch dam in Switzerland3 by a system of mechanical eccentric-mass vibrators and by the natural wind. Details are given of the dam itself, the tests and the experimental results obtained. Finite element calculations made before the tests, which include reservoir and foundation effects, are compared with the measurements.  相似文献   

12.
The characterization of the dynamic behavior of an arch dam, and its evolution throughout the structure's lifetime, provides important data for the safety control process. Forced vibration tests remain a reliable technique for this purpose. The Baixo Sabor dam is a 123 m high arch dam recently built in Portugal. Forced vibration tests were performed before and after the reservoir filling. Two techniques for forced vibration test are compared, discrete frequency scanning, the standard methodology, and continuous frequency scanning (sine sweep), a new proposed methodology, which allowed faster results without loss of precision. For the interpretation of test results two numerical models of the dam-reservoir-foundation system were built, and calibrated with the experimental data. A good match of numerical and experimental results was obtained for the six lowest frequencies and corresponding mode shapes.  相似文献   

13.
郑州黄河大桥主桥自振特性分析   总被引:9,自引:2,他引:9  
以京珠高速公路郑州黄河大桥主桥为研究对象,采用ANSYS有限元程序,建立了下承式钢管混凝土系杆拱桥的空间力学计算模型,利用子空间迭代法计算了该桥梁结构的自振周期和振型,对桥梁的模态特性进行了分析,计算结果可为该桥的设计、施工以及使用阶段的健康检测和维护提供技术参数和依据。  相似文献   

14.
An efficient procedure is developed for the hydrodynamic analysis of dam–reservoir systems. The governing equations of hydrodynamic pressure in the frequency as well as time domain are derived in the framework of the scaled boundary finite element method. The water compressibility and absorption of reservoir sediments can be conveniently taken into consideration. By extending the reservoir to infinity with uniform cross-section, only the dam–reservoir interface needs to be discretized to model the fluid domain, and the hydrodynamic pressure in the stream direction is solved analytically. Several numerical examples including a gravity dam with an inclined upstream face and an arch dam with a reservoir of arbitrary cross-section are provided to demonstrate the computational efficiency and accuracy of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The boundary element method has been successfully applied in the past to the analysis of hydrodynamic forces in two-dimensional infinite as well as two- and three-dimensional finite reservoirs subjected to seismic ground motions. This paper presents the results of more recent research on the application of the constant boundary element method to the 3D analysis of reservoir vibration. Special boundary conditions, previously used in the 2D case, to treat infinite radiation damping and damping from foundation soil and banks have been incorporated in this formulation. Numerical results for vibration of a 3D infinite rectangular reservoir as well as of a 3D infinite reservoir impounded by an arch dam are presented and compared with some existing results obtained by other researchers.  相似文献   

16.
Two processes using the Newmark implicit integration scheme are presented for the analysis of the earthquake response of a three-dimensional model for arch dam-reservoir systems including the effect of compressibility of the water. The solid structure and fluid regions are modelled separately, and the forcing functions at the interface are due to the hydrodynamic pressures from the reservoir acting on the upstream face of the dam wall, and the accelerations from the dam wall acting in turn on the reservoir. For the purposes of an initial investigation, elastic properties are assumed for the material of the dam, whilst in the reservoir radiation damping at the upstream boundary has been included, but bottom absorption has not. The excitation is provided by means of a combisweep which is fashioned so that its continuously varying frequencies pass through the fundamental frequencies of both the arch dam-reservoir system and the reservoir alone. Consequently the response is highly resonant, thus providing a severe test for the numerical procedures. From the numerical results obtained for an example problem it is concluded that both schemes provide an acceptable solution to the problem posed, and the possibility of enhancement to cater for more complex situations is discussed.  相似文献   

17.
The design of seismic resistant concrete gravity dam necessitates accurate determination of hydrodynamic pressure developed in the adjacent reservoir. The hydrodynamic pressure developed on structure is dependent on the physical characteristics of the boundaries surrounding the reservoir including reservoir bottom. The sedimentary material in the reservoir bottom absorbs energy at the bottom, which will affect the hydrodynamic pressure at the upstream face of the dam. The fundamental parameter characterizing the effect of absorption of hydrodynamic pressure waves at the reservoir bottom due to sediment is the reflection coefficient. The wave reflection coefficient is determined from parameters based on sediment layer thickness, its material properties and excitation frequencies. An analytical or a closed-form solution cannot account for the arbitrary geometry of the dam or reservoir bed profile. This problem can be efficiently tackled with finite element technique. The need for an accurate truncation boundary is felt to reduce the computational domain of the unbounded reservoir system. An efficient truncation boundary condition (TBC) which accounts for the reservoir bottom effect is proposed for the finite element analysis of infinite reservoir. The results show the efficiency of the proposed truncation boundary condition.  相似文献   

18.
基于接触非线性有限元模型,以锦屏一级拱坝为例,库水分别采用附加质量模型、可压缩流体有限元模型、不可压缩流体有限元模型计算了正常蓄水位及运行低水位时坝体的动力响应,结果表明:库水模型对拱坝动力响应有较大影响,随库水深度的增大,各模型计算结果差异增大;相比于流体可压缩模型,采用不可压缩流体模型所得动力响应普遍偏大;运行低水位工况,由于静水压力减小导致拱效应减弱,从而降低了拱坝的整体性,因此运行低水位工况各缝开度普遍高于正常蓄水位工况,且其拉应力范围较大,因此,运行低水位工况将对抗震设计起控制作用。  相似文献   

19.
A nonlinear finite element model for earthquake response analysis of arch dam–water–foundation rock systems is proposed in this paper. The model includes dynamic dam–water and dam–foundation rock interactions, the opening of contraction joints, the radiation damping of semi‐unbounded foundation rock, the compressibility of impounded water, and the upstream energy propagating along the semi‐unbounded reservoir. Meanwhile, a new equivalent force scheme is suggested to achieve free‐field input in the model. The effects of the earthquake input mechanism, joint opening, water compressibility, and radiation damping on the earthquake response of the Ertan arch dam (240 m high) in China are investigated using the proposed model. The results show that these factors significantly affect the earthquake response of the Ertan arch dam. Such factors should therefore be considered in the earthquake response analysis and earthquake safety evaluation of high arch dams. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
An extensive programme of full-scale ambient vibration tests has been conducted to measure the dynamic response of a 542 m (centre span of 274 m) cable-stayed bridge—the Quincy Bayview Bridge in Illinois. A microcomputer-based system was used to collect and analyse the ambient vibration data. A total of 25 modal frequencies and associated mode shapes were identified for the deck structure within the frequency range of 0–2 Hz. Also, estimations were made for damping ratios. The experimental data clearly indicated the occurrence of many closely spaced modal frequencies and spatially complicated mode shapes. Most tower modes were found to be associated with the deck modes, implying a considerable interaction between the deck and tower structure. No detectable levels of motion were evident at the foundation support of the pier. The results of the ambient vibration survey were compared to modal frequencies and mode shapes computed using a three-dimensional finite element model of the bridge. For most modes, the analytic and experimental modal frequencies and mode shapes compare quite well, especially for the vertical modes. Based on the findings of this study, a linear elastic finite element model appears to be capable of capturing much of the complex dynamic behaviour of the bridge with very good accuracy, when compared to the low-level dynamic responses induced by ambient wind and traffic excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号