首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local Tsunami Warning in the Pacific Coastal United States   总被引:2,自引:1,他引:1  
Coastal areas are warned of a tsunami by natural phenomena and man-made warning systems. Earthquake shaking and/or unusual water conditions, such as rapid changes in water level, are natural phenomena that warn coastal areas of a local tsunami that will arrive in minutes. Unusual water conditions are the natural warning for a distant tsunami. Man-made warning systems include sirens, telephones, weather radios, and the Emergency Alert System. Man-made warning systems are normally used for distant tsunamis, but can be used to reinforce the natural phenomena if the systems can survive earthquake shaking. The tsunami warning bulletins provided by the West Coast/Alaska and Pacific Tsunami Warning Centers and the flow of tsunami warning from warning centers to the locals are critical steps in the warning process. Public knowledge of natural phenomena coupled with robust, redundant, and widespread man-made warning systems will ensure that all residents and tourists in the inundation zone are warned in an effective and timely manner.  相似文献   

2.
A review of advances in China’s flash flood early-warning system   总被引:1,自引:0,他引:1  
This paper summarizes the main flash flood early-warning systems of America, Europe, Japan, and Taiwan China and discusses their advantages and disadvantages. The latest development in flash flood prevention is also presented. China’s flash flood prevention system involves three stages. Herein, the warning methods and achievements in the first two stages are introduced in detail. Based on the worldwide experience of flash flood early-warning systems, the general research idea of the third stage is proposed from the viewpoint of requirements for flash flood prevention and construction progress of the next stage in China. Real-time dynamic warning systems can be applied to the early-warning platform at four levels (central level, provincial level, municipal level, and county level) . Through this, soil moisture, peak flow, and water level can be calculated in real-time using distributed hydrological models, and then flash flood warning indexes can be computed based on defined thresholds of runoff and water level. A compound warning index (CWI) can be applied to regions where rainfall and water level are measured by simple equipment. In this manner, flash-flood-related factors such as rainfall intensity and antecedent and cumulative rainfall depths can be determined using the CWI method. The proposed methodology for the third stage could support flash flood prevention measures in the 13th 5-Year Plan for Economic and Social Development of the People’s Republic of China (2016–2020). The research achievements will serve as a guidance for flash flood monitoring and warning as well as flood warning in medium and small rivers.  相似文献   

3.
Intense rainfall is the most important landslide trigger. In many mountainous environments of the world, heavy rainfall has caused many landslides and slope failures in a matter of seconds without warning. Therefore, an early warning system can be an effective measure to reduce the damage caused by landslides and slope failures by facilitating the timely evacuation of people from landslide-prone areas. In this study, we propose an idea to correlate soil moisture changes and deformations in slope surface by means of elastic wave propagation in soil. Constant shear stress drained triaxial tests where water was infiltrated from the bottom of specimen until failure, and slope model tests under artificial rainfall were performed to investigate the response of elastic wave velocities during pre-failure phases of rainwater infiltration and deformation. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation, and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Possible mechanisms were interpreted based on the test results. It is proposed that a warning be issued at switch of wave velocity decrease rate. This approach can thus serve as the basis of an early warning system for landslides and slope failure considering both moisture content and deformation.  相似文献   

4.
Arattano  M. 《Natural Hazards》1999,20(2-3):197-213
Debris flows constitute a major threat forseveral urban settlements located on the fans ofmountain catchments and for other infrastructures thatinteract with these fans, particularly highways andmotorways. Often structural measures such as theconstruction and maintenance of deposition basins,check dams, channel linings are both too expensive andnot capable of completely guaranteeing the safety forinhabitants of villages and users of infrastructuresaffected by debris flows. Therefore the search offunctional, reliable and possibly not expensivewarning systems should be pursued to increase theavailable tools to face this often devastating kind ofphenomenon. In this paper the use of seismic detectorsfor the determination of a debris flow occurrence ina torrent before its arrival on the fan will bediscussed, together with their potential use asmonitoring and warning systems. In 1995 a set of fourseismic detectors was placed at a distance of aboutone hundred meters from each other along a straightchannel reach of a debris flow prone torrent locatedon the Eastern Italian Alps. The purpose, in a firstphase of the research, was mainly to verify whichinformation could be obtained through this type ofdevice on the occasion of a debris flow occurrence. On5 July 1995, 22 June and 8 July 1996 three debrisflows were recorded by this seismic network: the datathat have been collected will be presented andconveniently processed for their interpretation. Theresults that have been obtained show that the passageof a debris flow in a torrent can be clearlyidentified using seismic devices placed at a safedistance from the channel bed and that in some casesa velocity estimation of the flowing mass is alsopossible through the processing of the seismic data.  相似文献   

5.
Warning systems are increasingly applied to reduce damage caused by different magnitudes of rockslides and rockfalls. In an integrated risk-management approach, the optimal risk mitigation strategy is identified by comparing the achieved effectiveness and cost; estimating the reliability of the warning system is the basis for such considerations. Here, we calculate the reliability and effectiveness of the warning system installed in Preonzo prior to a major rockfall in May 2012. “Reliability” is defined as the ability of the warning system to forecast the hazard event and to prevent damage. To be cost-effective, the warning system should forecast an event with a limited number of false alarms to avoid unnecessary costs for intervention measures. The analysis shows that to be reliable, warning systems should be designed as fail-safe constructions. They should incorporate components with low failure probabilities, high redundancy, have low warning thresholds, and additional control systems. In addition, the experts operating the warning system should have limited risk tolerance. In an additional hypothetical probabilistic analysis, we investigate the effect of the risk attitude of the decision makers and of the number of sensors on the probability of detecting the event and initiating a timely evacuation, as well as on the related intervention cost. The analysis demonstrates that quantitative assessments can support the identification of optimal warning system designs and decision criteria.  相似文献   

6.
The three most important components necessary for functioning of an operational flood warning system are: (1) a rainfall measuring system; (2) a soil moisture updating system; and, (3) a surface discharge measuring system. Although surface based networks for these systems can be largely inadequate in many parts of the world, this inadequacy particularly affects the tropics, which are most vulnerable to flooding hazards. Furthermore, the tropical regions comprise developing countries lacking the financial resources for such surface-based monitoring. The heritage of research conducted on evaluating the potential for measuring discharge from space has now morphed into an agenda for a mission dedicated to space-based surface discharge measurements. This mission juxtaposed with two other upcoming space-based missions: (1) for rainfall measurement (Global Precipitation Measurement, GPM), and (2) soil moisture measurement (Hydrosphere State, HYDROS), bears promise for designing a fully space-borne system for early warning of floods. Such a system, if operational, stands to offer tremendous socio-economic benefit to many flood-prone developing nations of the tropical world. However, there are two competing aspects that need careful assessment to justify the viability of such a system: (1) cost-effectiveness due to surface data scarcity; and (2) flood prediction uncertainty due to uncertainty in the remote sensing measurements. This paper presents the flood hazard mitigation opportunities offered by the assimilation of the three proposed space missions within the context of these two competing aspects. The discussion is cast from the perspective of current understanding of the prediction uncertainties associated with space-based flood prediction. A conceptual framework for a fully space-borne system for early-warning of floods is proposed. The need for retrospective validation of such a system on historical data comprising floods and its associated socio-economic impact is stressed. This proposal for a fully space-borne system, if pursued through wide interdisciplinary effort as recommended herein, promises to enhance the utility of the three space missions more than what their individual agenda can be expected to offer.  相似文献   

7.
Comparison of the Canadian and US tornado detection and warning systems   总被引:1,自引:1,他引:0  
Tornadoes are one of the most powerful and destructive weather events. The frequency of tornado occurrence is highest in North America, especially in the US Canada is second only to the US, and approximately, 80 occurrences are reported annually. Communities are impacted only when and if a tornado touches down on the ground. Early recognition of tornadoes and proper communication of warnings in the pre-touchdown phase helps the public to be ready and respond appropriately and effectively. Given that tornadoes are hard to predict and the warnings give only a very brief window of opportunity to prepare for evacuation to a secure underground or other location, each activity in the detection and warning phases is critically important. This study is focused on conducting a detailed comparison of the tornado detection and warning systems in the US and Canada. The sequences of activities and their interrelationships in the tornado detection and warning systems of each country are identified and developed as networks. A detection and warning network for Canada is developed, using Calgary as a case study, whereas a separate network is developed for the US, showing how local residents receive tornado warnings initiated by a local weather forecast office. Moreover, collaborating partners are identified, and their involvement at each level of the information flow is recognized. The two networks are compared and critically analyzed, focusing on the key issues, such as prediction/detection capabilities, warning decision-making, warning dissemination methods, and the spotters’ role. This qualitative comparison supports the recognition of key areas that need to be considered in improving the tornado detection and warning system in Canada.  相似文献   

8.
The disign of flood warning — flood response systems is often performed as part of the overall engineering analysis of flood damage mitigation schemes. However, an important part of the flood response component of such systems is human perception of the flood hazard and its implication for the responses undertaken. This human dimension is examined from three viewpoints, the perception of the flood, the issues in the warning dissemination process, and the implications for the actions undertaken by individual flood plain occupants in response to a warning. Evidence is provided to show how the human characteristics of the flood plain occupants can signigicantly affect the benefits derived from a flood warning — flood response system. The importance of these non-engineering aspects of the problem leads to recommendations for closer collaboration between traditional technical experts and social scientists. The cooperation should extend beyond the assessment of the reduction in flood damages expected from a particular flood warning scheme into actual design of the dissemination process and response mechanisms.  相似文献   

9.
A debris flow is a serious natural disaster which can occur anywhere whether in a valley or on a mountain slope, destroying everything it passes through. Debris flows can occur suddenly and cause residents in the path to suffer casualties and property loss. An early warning system is necessary to reduce the damage in order to protect human life and personal property. However, most debris flow detection systems, like wireless sensors, satellite images and radar, are not suitable for general public use. Vision surveillance systems are generally erected in Taiwan as public devices for security. Therefore, we propose a novel debris early warning system that uses a computer vision technique and build a simulation environment to prove the feasibility.  相似文献   

10.
While earthquakes generate about 90% of all tsunamis, volcanic activity, landslides, explosions, and other nonseismic phenomena can also result in tsunamis. There have been 53 000 reported deaths as a result of tsunamis generated by landslides and volcanoes. No death tolls are available for many events, but reports indicate that villages, islands, and even entire civilizations have disappeared. Some of the highest tsunami wave heights ever observed were produced by landslides. In the National Geophysical Data Center world-wide tsunami database, there are nearly 200 tsunami events in which nonseismic phenomena played a major role. In this paper, we briefly discuss a variety of nonseismic phenomena that can result in tsunamis. We discuss the magnitude of the disasters that have resulted from such events, and we discuss the potential for reducing such disasters by education and warning systems.  相似文献   

11.
Peres  David J.  Cancelliere  Antonino 《Landslides》2021,18(9):3135-3147
Landslides - Rainfall intensity-duration landslide-triggering thresholds have become widespread for the development of landslide early warning systems. Thresholds can be in principle determined...  相似文献   

12.
In this paper, the updating of rainfall thresholds for landslide early warning systems (EWSs) is presented. Rainfall thresholds are widely used in regional-scale landslide EWSs, but the efficiency of those systems can decrease during the time, so a periodically updating should be required to keep their functionality. The updating of 12 of the 25 thresholds used in the EWS of Tuscany region (central Italy) is presented, and a comparison between performances of new and previous thresholds has been made to highlight the need of their periodical update. The updating has been carried out by collecting ca. 1200 new landslide reports (from 2010 to March 2013) and their respective rainfall data, collected by 332 rain gauges. The comparison has been made by the use of several statistical indexes and showed a marked increasing in the performances of the new thresholds with respect to previous ones.  相似文献   

13.
Natural Hazards - The Hindu Kush Himalayan region is extremely susceptible to periodic monsoon floods. Early warning systems with the ability to predict floods in advance can benefit tens of...  相似文献   

14.
Landslides are a significant hazard in many parts of the world and exhibit a high, and often underestimated, damage potential. Deploying landslide early warning systems is one risk management strategy that, amongst others, can be used to protect local communities. In geotechnical applications, slope stability models play an important role in predicting slope behaviour as a result of external influences; however, they are only rarely incorporated into landslide early warning systems. In this study, the physically based slope stability model CHASM (Combined Hydrology and Stability Model) was initially applied to a reactivated landslide in the Swabian Alb to assess stability conditions and was subsequently integrated into a prototype of a semi-automated landslide early warning system. The results of the CHASM application demonstrate that for several potential shear surfaces the Factor of Safety is relatively low, and subsequent rainfall events could cause instability. To integrate and automate CHASM within an early warning system, international geospatial standards were employed to ensure the interoperability of system components and the transferability of the implemented system as a whole. The CHASM algorithm is automatically run as a web processing service, utilising fixed, predetermined input data, and variable input data including hydrological monitoring data and quantitative rainfall forecasts. Once pre-defined modelling or monitoring thresholds are exceeded, a web notification service distributes SMS and email messages to relevant experts, who then determine whether to issue an early warning to local and regional stakeholders, as well as providing appropriate action advice. This study successfully demonstrated the potential of this new approach to landslide early warning. To move from demonstration to active issuance of early warnings demands the future acquisition of high-quality data on mechanical properties and distributed pore water pressure regimes.  相似文献   

15.
滑坡预警判据初步研究--以三峡库区为例   总被引:17,自引:2,他引:15  
在三峡库区典型地段滑坡灾害调查评价和统计分析的基础上,结合典型滑坡变形发展的阶段性变形现象、标志和临界诱发因素分析,初步提出3个层次的滑坡预警预报判据27条,包括:(1)滑坡空间预测识别判据11条,主要用于滑坡或潜在危岩体空间识别和危险性区划,是滑坡空间预测的基本判据;(2)滑坡状态判据7条,主要用于滑坡单体稳定性评价的亚临界-临界状态预警判据,是滑坡状态预警判据系统的重要组成部分;(3)滑坡临界时间预报判据9条,主要用于单体滑坡剧烈变形或临滑预报,是滑坡时间预报研究的关键判据.  相似文献   

16.
中小河流山洪预警预报系统开发设计及应用   总被引:1,自引:1,他引:0  
胡健伟  刘志雨 《水文》2011,31(3):18-21
我国中小河流众多,山洪频发,洪灾损失严重,是造成人员伤亡的主要灾种。目前,我国中小河流山洪预报预警技术研究还处于初步阶段,山洪监测预警系统尚在试点建设中。介绍水利部公益性项目"中小河流突发性洪水监测与预警预报技术研究"开发的中小河流山洪预警预报原型系统,包括基于分布式水文模型、动态临界雨量的山洪预警预报方法,山洪预警预报原型系统的总体结构、软件设计与功能实现,以及在其中一个示范区江西遂川江的试运行情况,并对其实际应用进行了分析,以期为当前所开展的中小河流洪水易发区水文监测预警项目及全国山洪灾害防御非工程措施建设等工作提供参考。  相似文献   

17.
Wang  Lin  Seko  Ichiro  Fukuhara  Makoto  Towhata  Ikuo  Uchimura  Taro  Tao  Shangning 《Natural Hazards》2022,114(1):127-156

Slope monitoring and early warning systems are a promising approach toward mitigating landslide-induced disasters. Many large-scale sediment disasters result in the destruction of infrastructure and loss of human life. The mitigation of vulnerability to slope and landslide hazards will benefit significantly from early warning alerts. The authors have been developing monitoring technology that uses a micro-electro-mechanical systems tilt sensor array that detects the precursory movement of vulnerable slopes and informs the issuance of emergency caution and warning alerts. In this regard, the determination of alarm thresholds is very important. Although previous studies have investigated the recording of threshold values by an extensometer which installation of an extensometer at appropriate sites is also difficult. The authors prefer tilt sensors and have proposed a novel threshold for the tilt angle, which was validated in this study. This threshold has an interesting similarity to previously reported viscous models. Additionally, multi-point monitoring has recently emerged and allows for many sensors to be deployed at vulnerable slopes without disregarding the slope’s precursory local behavior. With this new technology, the detailed spatial and temporal variation of the behavior of vulnerable slopes can be determined as the displacement proceeds toward failure.

  相似文献   

18.
A system for effectively forecasting flash floods of the Arno River (Tuscany, Italy) should provide a flood warning with 10–12 h of lead time, primarily in order to evacuate the city of Florence. This goal may be achieved by acquiring and processing meteorological and hydrological data in real-time and, accordingly, by releasing alarms at different levels of reliability and concern. Through the application of both procedural language and expert system techniques, a prototype was developed which can readily handle a variety of relevant information and make predictions on flood hazard in Florence. The system was fairly successfully tested by processing simple meteorological data which enable a 24 hour forewarning to be released.  相似文献   

19.
The concept of flood risk management, promoted by the EU Floods Directive, tries to mitigate flood risks not only by structural, hydraulic engineering measures, but also by non-structural measures, like, e.g., land-use planning, warning and evacuation systems. However, few methods currently exist for the economic evaluation of such non-structural measures and, hence, their comparison with structural measures. The objective of this paper is to demonstrate the potential benefits of employing a wider range of economic appraisal methods for flood projects, in particular, it provides examples and applications of methodologies which may be employed to evaluate non-structural measures and their transaction costs. In two case studies at the Mulde River, Germany, two non-structural measures, a resettlement option and a warning system, are evaluated and compared with structural alternatives with regard to their effectiveness, cost-effectiveness and efficiency. Furthermore, a simple approach is tested in order to show the transaction costs of these measures. Case study results show that the choice of evaluation criteria can have a major impact on the assessment results. In this regard, efficiency as an evaluation criterion can be considered as superior to cost-effectiveness and effectiveness as it is also able to consider sufficiently the impacts of non-structural measures. Furthermore, case study results indicate that transaction costs could play an important role, especially with non-structural measures associated with land-use changes. This could explain why currently these kinds of measures are rarely selected by decision makers.  相似文献   

20.
Flood occurrence has always been one of the most important natural phenomena, which is often associated with disaster. Consequently, flood forecasting (FF) and flood warning (FW) systems, as the most efficient non-structural measures in reducing flood loss and damage, are of prime importance. These systems are low cost and the time required for their implementation is relatively short. It is emphasized that for designing the components of these systems for various rivers, climatic conditions and geographical settings different methods are required. One of the major difficulties during implementing these systems in different projects is the fact that sometimes the main functions of these systems are ignored. Based on a systematic and practical approach and considering the components of these systems, it would be possible to extract the most essential key functions of the system and save time, effort and money by this way. For instance, in a small watershed with low concentration and small lead time, the main emphasis should be on predicting and monitoring weather conditions. In this article, different components of flood forecasting and flood warning systems have been introduced. Then analysis of the FF and FW system functions has been undertaken based on the value engineering (VE) technique. Utilizing a functional view based on function analysis system technique (FAST), the total trend of FF and FW functions has been identified. The systematic trend and holistic view of this technique have been used in optimizing FF and FW systems of the Golestan province and Golabdare watersheds in Iran as the case studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号