首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 584 毫秒
1.
The characteristics of wave and turbulence velocities created by a broad-banded irregular wave train breaking on a 1:35 slope were studied in a laboratory wave flume. Water particle velocities were measured simultaneously with wave elevations at three cross-shore locations inside the surf zone. The measured data were separated into low-frequency and high-frequency time series using a Fourier filter. The measured velocities were further separated into organized wave-induced velocities and turbulent velocity fluctuations by ensemble averaging. The broad-banded irregular waves created a wide surf zone that was dominated by spilling type breakers. A wave-by-wave analysis was carried out to obtain the probability distributions of individual wave heights, wave periods, peak wave velocities, and wave-averaged turbulent kinetic energies and Reynolds stresses. The results showed that there was a consistent increase in the kurtosis of the vertical velocity distribution from the surface to the bottom. The abnormally large downward velocities were produced by plunging breakers that occurred from time to time. It was found that the mean of the highest one-third wave-averaged turbulent kinetic energy values in the irregular waves was about the same as the time-averaged turbulent kinetic energy in a regular wave with similar deep-water wave height to wavelength ratio. It was also found that the correlation coefficient of the Reynolds stress varied strongly with turbulence intensity. Good correlation between u′ and w′ was obtained when the turbulence intensity was high; the correlation coefficient was about 0.3–0.5. The Reynolds stress correlation coefficient decreased over a wave cycle, and with distance from the water surface. Under the irregular breaking waves, turbulent kinetic energy was transported downward and landward by turbulent velocity fluctuations and wave velocities, and upward and seaward by the undertow. The undertow in the irregular waves was similar in vertical structure but lower in magnitude than in regular waves, and the horizontal velocity profiles under the low-frequency waves were approximately uniform.  相似文献   

2.
This is the first of three papers on the modelling of various types of surf zone phenomena. In this first paper, part I, the model is presented and its basic features are studied for the case of regular waves. The model is based on two-dimensional equations of the Boussinesq type and it features improved linear dispersion characteristics, possibility of wave breaking, and a moving boundary at the shoreline. The moving shoreline is treated numerically by replacing the solid beach by a permeable beach characterized by an extremely small porosity. Run-up of nonbreaking waves is verified against the analytical solution for nonlinear shallow water waves. The inclusion of wave breaking is based on the surface roller concept for spilling breakers using a geometrical determination of the instantaneous roller thickness at each point and modelling the effect of wave breaking by an additional convective momentum term. This is a function of the local wave celerity, which is determined interactively. The model is applied to cross-shore motions of regular waves including various types of breaking on plane sloping beaches and over submerged bars. Model results comprise time series of surface elevations and the spatial variation of phase-averaged quantities such as the wave height, the crest and trough elevations, the mean water level, and the depth-averaged undertow. Comparisons with physical experiments are presented. The phaseaveraged balance of the individual terms in the momentum and energy equation is determined by time-integration and quantities such as the cross-sectional roller area, the radiation stress, the energy flux and the energy dissipation are studied and discussed with reference to conventional phase-averaged wave models. The companion papers present cross-shore motions of breaking irregular waves, swash oscillations and surf beats (part II) and nearshore circulations induced by breaking of unidirectional and multidirectional waves (part III).  相似文献   

3.
《Coastal Engineering》2004,51(1):53-80
In this paper, a two-dimensional multi-scale turbulence model is proposed to study breaking waves. The purpose of developing this model is to produce a relatively accurate model with moderate computer requirements. The free surface is tracked by the VOF technique, the log-law profile for the mean velocity is applied at the bottom. Comparing with the Reynolds-Averaged Navier-Stokes models (RANS), the present model shows improving agreement with experimental measurements in terms of surface elevations, particle velocities, wave height distributions and undertow profiles. The subgrid scale (SGS) turbulent transport mechanism is also discussed in the paper. It is found that turbulent production and dissipation are of the same order, but turbulent production is primarily located at the wavefront and above the wave trough, whereas turbulent dissipation is primarily located at the back face of a wave, indicating that in these regions, the assumption of equilibrium is not correct. Below the trough level, the local equilibrium assumption is reasonable. Turbulent convection and diffusion are of the same order at the trough level. Above the trough level, turbulent convection dominates. Under the spilling breaking wave, turbulent kinetic energy is continue to dissipate in the bore region, whereas under the plunging breaking wave, the turbulent kinetic energy is dissipated very rapidly within one wave period.  相似文献   

4.
5.
The boundary layer characteristics beneath waves transforming on a natural beach are affected by both waves and wave-induced currents, and their predictability is more difficult and challenging than for those observed over a seabed of uniform depth. In this research, a first-order boundary layer model is developed to investigate the characteristics of bottom boundary layers in a wave–current coexisting environment beneath shoaling and breaking waves. The main difference between the present modeling approach and previous methods is in the mathematical formulation for the mean horizontal pressure gradient term in the governing equations for the cross-shore wave-induced currents. This term is obtained from the wave-averaged momentum equation, and its magnitude depends on the balance between the wave excess momentum flux gradient and the hydrostatic pressure gradient due to spatial variations in the wave field of propagating waves and mean water level fluctuations. A turbulence closure scheme is used with a modified low Reynolds number k-ε model. The model was validated with two published experimental datasets for normally incident shoaling and breaking waves over a sloping seabed. For shoaling waves, model results agree well with data for the instantaneous velocity profiles, oscillatory wave amplitudes, and mean velocity profiles. For breaking waves, a good agreement is obtained between model and data for the vertical distribution of mean shear stress. In particular, the model reproduced the local onshore mean flow near the bottom beneath shoaling waves, and the vertically decreasing pattern of mean shear stress beneath breaking waves. These successful demonstrations for wave–current bottom boundary layers are attributed to a novel formulation of the mean pressure gradient incorporated in the present model. The proposed new formulation plays an important role in modeling the boundary layer characteristics beneath shoaling and breaking waves, and ensuring that the present model is applicable to nearshore sediment transport and morphology evolution.  相似文献   

6.
《Coastal Engineering》2004,51(10):1021-1049
A numerical process-based model to forecast beach profile morphodynamics has been developed. In the present paper, an analysis of various modelling approaches and key parametrizations involved in the estimation of the wave-driven current and the suspended sediment concentration is carried out.Several resolution techniques for the 1DV horizontal (i.e., in the x-direction perpendicular to coastline) momentum equation governing the Mean Horizontal Velocity (MHV) are analysed. In the first kind of techniques, the mean horizontal velocity is computed from the momentum equation, whereas the Mean Water Level (MWL) is computed using a parametrization of the depth-averaged momentum equation. Two boundary or integral conditions are thus needed. In the second kind, both mean horizontal velocity and mean water level gradient in the x-direction are the unknowns of the momentum equation, thus, three boundary or integral conditions are needed. Various additional conditions are discussed. We show that using a technique of the first kind is equivalent to imposing the difference between the surface and the bottom shear stresses in the 1D vertical equation. Both techniques lead to results that are in good agreement with the Delta Flume experimental data, provided the Stokes drift flow discharge is imposed as an additional condition. The influence of the breaking roller model and of the turbulent viscosity parametrization are also analysed.Suspended sediment transport by the mean current and wave-induced bedload transport are taken into account in the sediment flux. Three turbulent diffusivity parametrizations are compared for suspended sediment concentration estimations. A linear profile for the turbulent diffusivity taking into account the wave bottom shear stress and the surface wave breaking turbulence production is shown to give the best results. Using experimental data, we put forward the poor estimation of the bottom sediment concentration given by the three implemented parametrizations. We thus propose a new parametrization relying on a Shields parameter based on the breaking roller induced surface shear stress. Using this new parametrization, the bottom profile used in the tests keeps its two bars which disappear otherwise. However, the morphodynamical model still overestimates the bars offshore motion, a bias already observed in other models.  相似文献   

7.
A quasi three-dimensional numerical model of wave-driven coastal currents with the effects of surface rollers is developed for the study of the spatial lag between the location of the maximum wave-induced current and the wave breaking point.The governing equations are derived from Navier-Stokes equations and solved by the hybrid method combining the fractional step finite different method in the horizontal plane with a Galerkin finite element method in the vertical direction.The surface rollers effects are considered through incorporating the creation and evolution of the roller area into the free surface shear stress.An energy equation facilitates the computation process which transfers the wave breaking energy dissipation to the surface roller energy.The wave driver model is a phase-averaged wave model based on the wave action balance equation.Two sets of laboratory experiments producing breaking waves that generated longshore currents on a planar beach are used to evaluate the model's performance.The present wave-driven coastal current model with the roller effect in the surface shear stress term can produce satisfactory results by increasing the wave-induced nearshore current velocity inside the surf zone and shifting the location of the maximum longshore current velocity landward.  相似文献   

8.
《Ocean Modelling》2011,39(3-4):230-243
A three-dimensional numerical model was established to simulate the wave-induced currents. The depth-varying residual momentum, surface roller, wave horizontal and vertical turbulent mixing effects were incorporated as major driving forces. A surface roller evolution model considering the energy transfer, roller density and bottom slope dissipation was developed. The expression of the wave-induced horizontal turbulent mixing coefficient proposed by Larson and Kraus (1991) was extended to three-dimensional form. Plenty of experimental cases were used to validate the established model covering the wave setup, undertow, longshore currents and rip currents. Validation results showed the model could reasonably describe the main characteristics of different wave-induced current phenomena. The incorporation of surface roller for breaking waves should not be neglected in the modeling of surfzone hydrodynamics. The wave-induced turbulent mixing affects the structures of wave-induced current either in horizontal or in vertical directions. Sensitivity analysis of the major calibration parameters in the established model was made and their ranges were evaluated.  相似文献   

9.
海浪破碎对海洋上混合层中湍能量收支的影响   总被引:2,自引:1,他引:2  
海浪破碎产生一向下输入的湍动能通量,在近海表处形成一湍流生成明显增加的次层,加强了海洋上混合层中的湍流垂向混合。为了研究海浪破碎对混合层中湍能量收支的影响,文中分析了海浪破碎对海洋上混合层中湍流生成的影响机制,采用垂向一维湍封闭混合模式,通过改变湍动能方程的上边界条件,引入了海浪破碎产生的湍动能通量,并分别对不同风速下海浪破碎的影响进行了数值研究,分析了混合层中湍能量收支的变化。当考虑海浪破碎影响时,近海表次层中的垂直扩散项和耗散项都有显著的增加,该次层中被耗散的湍动能占整个混合层中耗散的总的湍能量的92.0%,比无海浪破碎影响的结果增加了近1倍;由于平均流场切变减小,混合层中的湍流剪切生成减小了3.5%,形成一种存在于湍动能的耗散和垂直扩散之间的局部平衡关系。在该次层以下,局部平衡关系与壁层定律的结论一致,即湍动能的剪切生成与耗散相平衡。研究结果表明,海浪破碎在海表产生的湍动能通量影响了海洋上混合层中的各项湍能量收支间的局部平衡关系。  相似文献   

10.
Three-dimensional numerical modeling of nearshore circulation   总被引:1,自引:0,他引:1  
  相似文献   

11.
《Ocean Modelling》2011,39(3-4):267-279
Near-surface enhancement of turbulent mixing and vertical mixing coefficient for temperature owing to the effect of surface wave breaking is investigated using a two-dimensional (2-D) ocean circulation model with a tidal boundary condition in an idealized shelf sea. On the basis of the 2-D simulation, the effect of surface wave breaking on surface boundary layer deepening in the Yellow Sea in summer is studied utilizing a 3-D ocean circulation model. A well-mixed temperature surface layer in the Yellow Sea can be successfully reconstructed when the effect of surface wave breaking is considered. The diagnostic analysis of the turbulent kinetic energy equation shows that turbulent mixing is enhanced greatly in the Yellow Sea in summer by surface wave breaking. In addition, the diagnostic analysis of momentum budget and temperature budget also show that surface wave breaking has an evident contribution to the turbulent mixing in the surface boundary layer. We therefore conclude that surface wave breaking is an important factor in determining the depth of the surface boundary layer of temperature in the Yellow Sea in summer.  相似文献   

12.
Mass flux and undertow in a surf zone   总被引:1,自引:0,他引:1  
The mass of water carried shoreward by the breaking waves in a surf zone will, in a two-dimensional situation, be compensated by a seaward return flow, the undertow. It is shown that the undertow is driven by the local difference between radiation stress and the set-up pressure gradient which only balance each other in average over the depth. Turbulent shear stresses are required to maintain a steady situation. Comparison with measurements confirms the theoretical results.  相似文献   

13.
在湍流局地平衡假设下 ,建立了齐次湍能输运方程封闭模型 (HKE) ,并在平板边界层的两种经典流动中加以检验 ,给出 HKE封闭下的流速、湍流动能和湍流混合系数剖面的形式解。结果表明 ,HKE可以避免在流速剪切为零时的无湍流混合问题 ,其解与 L aufer湍流实验吻合 ,因而HKE模型比混合长理论有更合理的内涵。文中还给出 HKE封闭的浅海动力学模型 ,以湍应力和水位梯度力的平衡为运动的基本受力平衡 ,进行了模型的量阶分析和运动分析 :当阻尼频率和运动频率同量阶时 ,惯性运动不可忽略 ;在潮振荡占优的浅海中 ,对流非线性相对于惯性运动为小量 ;当阻尼频率足够大时 ,科氏力项相对于湍应力也可能为小量。  相似文献   

14.
A probabilistic model ( -model) was developed to describe the propagation and transformation of individual waves (wave by wave approach). The individual waves shoal until an empirical criterion for breaking is satisfied. Wave height decay after breaking is modelled by using an energy dissipation method. Wave-induced set-up and set-down and breaking-associated longshore currents are also modelled. Laboratory and field data were used to calibrate and verify the model. The model was calibrated by adjusting the wave breaking coefficient (as a function of local wave steepness and bottom slope) to obtain optimum agreement between measured and computed wave height. Four tests carried out in the large Delta flume of Delft Hydraulics were considered. Generally, the measured H1/3-wave heights are reasonably well represented by the model in all zones from deep water to the shallow surf zone. The fraction of breaking waves was reasonably well represented by the model in the upsloping zones of the bottom profile. Verification of the model results with respect to wave-induced longshore current velocities was not extensive, because of a lack of data. In case of a barred profile the measured longshore velocities showed a relatively uniform distribution in the (trough) zone between the bar crest and the shoreline, which could to some extent be modelled by including space-averaging of the radiation force gradient, horizontal mixing and longshore water surface gradients related to variations in set-up. In case of a monotonically upsloping profile the cross-shore distribution of the longshore current velocities is reasonably well represented.  相似文献   

15.
In the Boussinesq approximation, topographic waves entrained by a sloping bottom are considered with allowance for turbulent viscosity and diffusion. The mean flows induced by a wave through nonlinearity are determined. The turbulent exchange coefficients are expressed in terms of the density of turbulent energy by using the relations of the semiempirical theory of turbulence. The equation for boundary-layer wave solutions and the equation of turbulent energy balance are solved jointly, which makes it possible to determine the vertical distribution of the density of turbulent energy in the area of the given wave. In the diffusion approximation, the vertical distribution of the concentration of wave-suspended sediments is obtained for the case when the tangential bottom stress exceeds the critical values corresponding to the start of sediment motion.  相似文献   

16.
The characteristics of turbulence created by a plunging breaker on a 1 on 35 plane slope have been studied experimentally in a two-dimensional wave tank. The experiments involved detailed measurements of fluid velocities below trough level and water surface elevations in the surf zone using a fibre-optic laser-Doppler anemometer and a capacitance wave gage. The dynamical role of turbulence is examined making use of the transport equation for turbulent kinetic energy (the k-equation). The results show that turbulence under a plunging breaker is dominated by large-scale motions and has certain unique features that are associated with its wave condition. It was found that the nature of turbulence transport in the inner surf zone depends on a particular wave condition and it is not similar for different types of breakers. Turbulent kinetic energy is transported landward under a plunging breaker and dissipated within one wave cycle. This is different from spilling breakers where turbulent kinetic energy is transported seaward and the dissipation rate is much slower. The analysis of the k-equation shows that advective and diffusive transport of turbulence play a major role in the distribution of turbulence under a plunging breaker, while production and dissipation are not in local equilibrium but are of the same order of magnitude. Based on certain approximate analytical approaches and experimental measurements it is shown that turbulence production and viscous dissipation below trough level amount to only a small portion of the wave energy loss caused by wave breaking. It is suggested that the onshore sediment transport produced by swell waves may be tied in a direct way to the unique characteristics of turbulent flows in these waves.  相似文献   

17.
《Coastal Engineering》2001,42(1):53-86
A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence is described by large eddy simulation where the larger turbulent features are simulated by solving the flow equations, and the small scale turbulence that is not resolved by the flow model is represented by a sub-grid model. A simple Smagorinsky sub-grid model has been used for the present simulations. The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved. The surface is still specified to be uniform in the transverse (alongshore) direction, and it is only the flow field that is three-dimensional.The turbulent structures are investigated under different breaker types, spilling, weak plungers and strong plungers. The model is able to reproduce complicated flow phenomena such as obliquely descending eddies. The turbulent kinetic energy is found by averaging over the transverse direction. In spilling breakers, the turbulence is generated in a series of eddies in the shear layer under the surface roller. After the passage of the roller the turbulence spreads downwards. In the strong plunging breaker, the turbulence originates to a large degree from the topologically generated vorticity. The turbulence generated at the plunge point is almost immediately distributed over the entire water depth by large organised vortices. Away from the bed, the length scale of the turbulence (the characteristic size of the eddies resolved by the model) is similar in the horizontal and the vertical direction. It is found to be of the order one half of the water depth.  相似文献   

18.
A model explaining the mechanism of alongshore bar formation from the point of view of the sediment balance in the surf zone is considered. A cloud of suspended matter that appears during wave breaking is transported shoreward and simultaneously sediments forming a vertical material flux directed to the bottom (S). Simultaneously, an undertow generates a horizontal offshore flux of suspended matter q x . Under these conditions, the sediment balance is determined by the equality of the flux -S and the gradient dq x /dx. The bottom profile satisfying the balance equation is a bar profile with the crest at the point of the flux maximum -S. The model predicts a concave profile of the seaside slope and a concave-convex profile of the slope in the trough. A conclusion is reached on the basis of the calibration and verification of the model based on the field data that the suggested mechanism manifests itself differently in the outer and inner zones of the coastal zone. In the inner zone, the horizontal size of the bar is determined by the length of short wind waves, while, in the outer one, it is determined by the length of the infragravity waves related to the groups of short waves. It is shown that the model can be applied to estimate the parameters of the largest bar in the inner part of the coastal zone.  相似文献   

19.
通过大尺度水槽波浪引起泥沙悬移的动床模型实验,研究了沙坝海岸破波带内水底悬沙浓度形成机理,通过比较时间平均水底悬沙浓度与时间平均水底波浪水质点动能或时间平均水底湍动能之间的相关性,论证了利用时间平均湍动能比利用时间平均波浪水质点动能计算时间平均水底悬沙浓度更为适用,并提出了以上时间平均水底悬沙浓度与水底湍动能之间的关系也可以用来近似表达时间变化的水底悬沙浓度与时间变化的水底湍动能之间的关系。研究针对规则波、波群和不规则波3种波浪形态进行,并分别对破波带内的爬坡区、内破波区和沙坝区3个区域实验结果进行讨论。  相似文献   

20.
沿岸流中混合系数的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
进行了在规则波作用下破波带内水平混合系数测量的物理模型实验。通过在沿岸流流场中投放墨水点源和采用CCD摄像机摄像,测量了点源扩散过程。利用水深平均二维扩散方程近似解析解得到了由实验结果计算混合系数的方法。实验结果表明:扩散系数仅依赖于当地水深,与波浪参数(周期和波高)无关。沿岸流沿水深变化产生的离散作用导致顺流方向(纵向)混合系数远大于横流方向(横向)混合系数。横流方向混合系数中由波浪产生的扩散系数占总扩散系数约40%,其余为波浪破碎引起的湍流产生的扩散系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号