首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
崔成  严冰  左书华 《海洋工程》2019,37(1):46-55
基于二次开发开源计算流体力学(CFD)软件包Open FOAM中的非稳态不可压缩两相流求解器inter Foam建立数值模型,增加了基于方向谱的三维造波边界和吸收边界,成功模拟了三维多向畸形波过程。通过与模型试验波面和目标谱对比,验证了数值模型模拟三维多向畸形波的有效性。另外,分析了网格尺度和柯朗数对模拟结果的影响,并使用连长统计和SIWEH两种方法分析了包含畸形波波列的群性。研究结果表明:在本研究范围内,网格尺度设置0.02 m×0.01 m×0.02 m,最大柯朗数选择0.25,模拟出的三维畸形波效果最好;从能量角度描述畸形波的群性更为合理。  相似文献   

2.
A one-dimensional high-resolution finite volume model capable of simulating storm waves propagating in the coastal surf zone and overtopping a sea wall is presented. The model (AMAZON) is based on solving the non-linear shallow water (NLSW) equations. A modern upwind scheme of the Godunov-type using an HLL approximate Riemann solver is described which captures bore waves in both transcritical and supercritical flows. By employing a finite volume formulation, the method can be implemented on an irregular, structured, boundary-fitted computational mesh. The use of the NLSW equations to model wave overtopping is computationally efficient and practically flexible, though the detailed structure of wave breaking is of course ignored. It is shown that wave overtopping at a vertical wall may also be approximately modelled by representing the wall as a steep bed slope. The AMAZON model solutions have been compared with analytical solutions and laboratory data for wave overtopping at sloping and vertical seawalls and good agreement has been found. The model requires more verification tests for irregular waves before its application as a generic design tool.  相似文献   

3.
波浪与起伏水平板防波堤相互作用数值模拟   总被引:1,自引:1,他引:0  
利用自主研发的基于紧致插值曲线CIP(constrained interpolation profile)方法的数学模型,开展规则波与起伏水平板防波堤相互作用的数值模拟研究。模型在笛卡尔直角坐标下建立,以CIP方法为流场基本求解器,分步求解Navier-Stokes方程,利用高精度的流体体积类型的THINC/SW (tangent of hyperbola for interface capturing with slope weighting)方法重构自由液面,采用浸入边界IBM(immersed boundary method)方法处理波浪与起伏板防波堤的耦合作用问题,通过动量源项造波方法模拟波浪的产生。重点关注波浪的浅水变形和板两端涡旋脱落的非线性现象,分析不同潜深、波要素下的板周围流场分布、板的运动响应和波浪的反透射系数。结果表明:起伏水平板主要通过能量反射、板上浅水变形和板两端的涡脱落消能,能有效减小板后波高,具有作为防波堤的可行性。  相似文献   

4.
灾害性波浪是中国沿海地区最具破坏性的自然灾害之一。采用开源程序OpenFOAM中interFoam求解器,对低顶海堤(在风暴潮和海平面上升情况下所面临的不利工况)的孤立波越浪特性开展数值模拟研究。通过孤立波冲击海堤的基准算例,验证模型在模拟波浪爬升和越浪过程中大变形波面以及剧烈波浪力方面的精度。基于验证的数值模型,对孤立波在低顶海堤上的越浪特征以及防浪墙高度对越浪的影响开展参数化研究。结果表明堤顶超高减小导致更为剧烈的越浪。针对尚无低顶海堤孤立波越浪量经验公式的问题,提出新的适用于堤顶超高小或为0的孤立波越浪量经验公式。此外,研究发现增加防浪墙高度可有效减少越浪,但防浪墙所受的波浪力也增大。综合考虑防浪墙减少越浪以及自身所受波浪力,针对文中研究采用的海堤截面和波浪条件,建议无量纲防浪墙高度取为1.00。  相似文献   

5.
Open boundaries are important when simulating water waves. In this study, a transparent boundary condition at an open boundary was developed for simulating nonlinear water waves propagating to a distant area using the Moving Particle Semi-implicit method. The novelty of this study is that the technique of wave analysis used in the experiment was introduced into the particle simulation to absorb incident waves; the simulation cost was reduced by employing inflow and outflow regions instead of a long dissipation region. Incident waves in front of the boundary were evaluated using Fourier analysis, and the particles on the transparent boundary were forced to move at the velocity of the analytical solution for Stokes waves in order to absorb the incident waves. The analysis was restricted to periodic waves. Wave propagation was simulated for two wave periods using the developed transparent boundary condition. The results showed that this transparent boundary transmitted the incident waves with small reflection and the simulation cost was lower than that for wave damping by a conventional highly viscous region.  相似文献   

6.
Numerical simulation of dam-break wave, as an imitation of tsunami hydraulic bore, with a hump of different slopes is performed in this paper using an in-house code, named a Constrained Interpolation Profile (CIP)-based model. The model is built on a Cartesian grid system with the Navier Stokes equations using a CIP method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of solid body boundary. A more accurate interface capturing scheme, the Tangent of hyperbola for interface capturing/Slope weighting (THINC/SW) scheme, is adopted as the interface capturing method. Then, the CIP-based model is applied to simulate the dam break flow problem in a bumpy channel. Considerable attention is paid to the spilling type reflected bore, the following spilling type wave breaking, free surface profiles and water level variations over time. Computations are compared with available experimental data and other numerical results quantitatively and qualitatively. Further investigation is conducted to analyze the influence of variable slopes on the flow features of the tsunami-like bore.  相似文献   

7.
《Coastal Engineering》2005,52(6):513-533
Using the perturbation method, a time dependent parabolic equation is developed based on the elliptic mild slope equation with dissipation term. With the time dependent parabolic equation employed as the governing equation, a numerical model for wave propagation including dissipation term in water of slowly varying topography is presented in curvilinear coordinates. In the model, the self-adaptive grid generation method is employed to generate a boundary-fitted and varying spacing mesh. The numerical tests show that the effects of dissipation term should be taken into account if the distance of wave propagation is large, and that the outgoing boundary conditions can be treated more effectively by introduction of the dissipation term into the numerical model. The numerical model is able to give good results of simulating wave propagation for waters of complicatedly boundaries and effectively predict physical processes of wave propagation. Moreover, the errors of the analytical solution deduced by Kirby et al. (1994) [Kirby, J.T., Dalrymple, R.A., Kabu, H., 1994. Parabolic approximation for water waves in conformal coordinate systems. Coastal Engineering 23, 185–213.] from the small-angle parabolic approximation of the mild-slope equation for the case of waves between diverging breakwaters in a polar coordinate system are corrected.  相似文献   

8.
A vertical two-dimensional numerical model has been applied to solving the Reynolds Averaged Navier- Stokes (RANS} equations in the simulation of current and wave propagation through vegetated and non- vegetated waters. The k-e model is used for turbulence closure of RANS equations. The effect of vegeta- tion is simulated by adding the drag force of vegetation in the flow momentum equations and turbulence model. To solve the modified N-S equations, the finite difference method is used with the staggered grid system to solver equations. The Youngs' fractional volume of fluid (VOF) is applied tracking the free sur- face with second-order accuracy. The model has been tested by simulating dam break wave, pure current with vegetation, solitary wave runup on vegetated and non-vegetated channel, regular and random waves over a vegetated field. The model reasonably well reproduces these experimental observations, the model- ing approach presented herein should be useful in simulating nearshore processes in coastal domains with vegetation effects.  相似文献   

9.
Vegetation damping effects on propagating water waves have been investigated by many researchers. This paper investigates the effects of damping due to vegetation on solitary water wave run-up via numerical simulation. The numerical model is based on an implementation of Morison's formulation for vegetation induced inertia and drag stresses in the nonlinear shallow water equations. The numerical model is solved via a finite volume method on a Cartesian cut cell mesh. The accuracy of the numerical scheme and the effects of the vegetation terms in the present model are validated by comparison with experiment results. The model is then applied to simulate a solitary wave propagating on a plane slope with vegetation. The sensitivity of solitary wave run-up to plant height, diameter and stem density is investigated by comparison of the numerical results for different patterns of vegetation. The numerical results show that vegetation can effectively reduce solitary wave propagation velocity and that solitary wave run-up is decreased with increase of plant height in water and also diameter and stem density.  相似文献   

10.
A Modified Form of Mild-Slope Equation with Weakly Nonlinear Effect   总被引:6,自引:0,他引:6  
Nonlinear effect is of importance to waves propagating from deep water to shallow water.Thenon-linearity of waves is widely discussed due to its high precision in application.But there are still someproblems in dealing with the nonlinear waves in practice.In this paper,a modified form of mild-slope equa-tion with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation.The modified form of mild-slope equation is convenient to solvenonlinear effect of waves.The model is tested against the laboratory measurement for the case of a submergedelliptical shoal on a slope beach given by Berkhoff et al,The present numerical results are also comparedwith those obtained through linear wave theory.Better agreement is obtained as the modified mild-slope e-quation is employed.And the modified mild-slope equation can reasonably simulate the weakly nonlinear ef-fect of wave propagation from deep water to coast.  相似文献   

11.
植被斜坡岸滩海啸波消减数值模拟研究   总被引:1,自引:0,他引:1  
An explicit one-dimensional model based on the shallow water equations(SWEs) was established in this work to simulate tsunami wave propagation on a vegetated beach. This model adopted the finite-volume method(FVM)for maintaining the mass balance of these equations. The resistance force caused by vegetation was taken into account as a source term in the momentum equation. The Harten–Lax–van Leer(HLL) approximate Riemann solver was applied to evaluate the interface fluxes for tracing the wet/dry transition boundary. This proposed model was used to simulate solitary wave run-up and long-periodic wave propagation on a sloping beach. The calibration process suitably compared the calculated results with the measured data. The tsunami waves were also simulated to discuss the water depth, tsunami force, as well as the current speed in absence of and in presence of forest domain. The results indicated that forest growth at the beach reduced wave energy loss caused by tsunamis. A series of sensitivity analyses were conducted with respect to variable parameters(such as vegetation densities, wave heights, wave periods, bed resistance, and beach slopes) to identify important influences on mitigating tsunami damage on coastal forest beach.  相似文献   

12.
The FUNWAVE model is used for simulating simulation of monochromatic and irregular wave propagation in a channel with a bar-trough profile. FUNWAVE is based upon the extended Boussinesq equations. The study aims to analyze the model's performance when simulating shoaling, wave breaking and nonlinear interactions that are present in nearshore wave propagation. For that, high-order time domain statistics (root mean-square wave height, skewness, asymmetry and the kurtosis) of the model simulations and of the observations were compared along the whole channel. Also, a frequency domain analysis including standard spectral analysis and the bispectrum was carried out in selected points of the flume. The evaluation included the role of the wave breaking internal model parameters. The main conclusion is that, in general, the one-dimensional version of FUNWAVE simulates quite well the nonlinear transformation of a wave over a bottom with a bar-tough profile, for both regular and irregular wave conditions. The model reproduces the transformation of the wave shape, specially the increasing sharper wave crests and flatter troughs and also the lack of vertical symmetry with crests pitching forward, as it propagates along the domain. However, some differences persist after wave breaking, mainly due to the nature of the wave-breaking module. In this module, the energy dissipation is induced by the increase of viscosity, a rather simple mechanism, without the modification of the wave shape. Also, the energy dissipation develops in a smooth way which is appropriated for spilling breaking waves, but not for plunging breaking waves where the dissipation starts more abruptly.  相似文献   

13.
Nonlinear Dynamic Behaviors of A Floating Structure in Focused Waves   总被引:1,自引:1,他引:0  
曹飞凤  赵西增 《海洋工程》2015,29(6):807-820
Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional (2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile (CIP)-based Cartesian grid model, in which a more accurate VOF (Volume of Fluid) method, the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.  相似文献   

14.
A numerical model for wave propagation in a harbour is verified by use of physical models.The extended time-dependent mild slope equation is employed as the governing equation,and the model is solved by use of ADI method containing the relaxation factor.Firstly,the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests,and it is regarded as the basis for simulating partial reflection boundaries of the numerical model.Then model tests on refraction,diffraction and reflection of waves in a harbour are performed to measure wave height distribution.Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.  相似文献   

15.
Wave Numerical Model for Shallow Water   总被引:4,自引:0,他引:4  
The history of forecasting wind waves by wave energy conservation equation is briefly des-cribed.Several currently used wave numerical models for shallow water based on different wave theoriesare discussed.Wave energy conservation models for the simulation of shallow water waves are introduced,with emphasis placed on the SWAN model,which takes use of the most advanced wave research achieve-ments and has been applied to several theoretical and field conditions.The characteristics and applicabilityof the model,the finite difference numerical scheme of the action balance equation and its source termscomputing methods are described in detail.The model has been verified with the propagation refractionnumerical experiments for waves propagating in following and opposing currents;finally.the model is ap-plied to the Haian Gulf area to simulate the wave height and wave period field there,and the results arecompared with observed data.  相似文献   

16.
In this paper, a modified leap-frog finite difference (FD) scheme is developed to solve Non linear Shallow Water Equations (NSWE). By adjusting the FD mesh system and modifying the leap-frog algorithm, numerical dispersion is manipulated to mimic physical frequency dispersion for water wave propagation. The resulting numerical scheme is suitable for weakly nonlinear and weakly dispersive waves propagating over a slowly varying water depth. Numerical studies demonstrate that the results of the new numerical scheme agree well with those obtained by directly solving Boussinesq-type models for both long distance propagation, shoaling and re-fraction over a slowly varying bathymetry. Most importantly, the new algorithm is much more computationally efficient than existing Boussinesq-type models, making it an excellent alternative tool for simulating tsunami waves when the frequency dispersion needs to be considered.  相似文献   

17.
Large Eddy Simulation for Wave Breaking in the Surf Zone   总被引:1,自引:0,他引:1  
In this paper, (he large eddy simulation method is used combined with the marker and cell method to study the wave propagation or shoaling and breaking process. As wave propagates into shallow water, the shoaling leads lo the increase of wave height, and then at a certain position, the wave will be breaking. The breaking wave is a powerful agent for generating turbulence, which plays an important role in most of the fluid dynamic processes throughout the surf zone, such as transformation of wave energy, generation of near-shore current and diffusion of materials. So a proper numerical model for describing the turbulence effect is needed. In this paper, a revised Smagorinsky subgrid-scale mode! is used to describe the turbulence effect. The present study reveals that the coefficient of the Smagorinsky model for wave propagation or breaking simulation may be taken as a varying function of the water depth and distance away from the wave breaking point. The large eddy simulation model presented in this pape  相似文献   

18.
《Coastal Engineering》2006,53(9):737-748
This study addresses a fuzzy–neural hybrid system of simulating typhoon waves. A membership function based on the fuzzy theory is expressed by a union Gaussian function to illustrate the rapid wave decaying. Four areas separated by two lines which intersect at the Hua-Lien harbor indicate the case of typhoon's position and propagation. Better simulation performance of the peak wave heights and their occurrence time in both the learning stage and the verification stage simulated by the NF2 model than by the NF1 model is identified. The wave decaying due to land effect is well described by the NF2 model. The NF2 model is applicable for well simulating typhoon waves during the whole period of a typhoon approaching to Taiwan.  相似文献   

19.
On the basis of the previous studies, the simplest hyperbolic mild-slope equation has been gained and the linear time-dependent numerical model for the water wave propagation has been established combined with different boundary conditions. Through computing the effective surface displacement and transforming into the real transient wave motion, related wave factors will be calculated. Compared with Lin’s model, analysis shows that calculation stability of the present model is enhanced efficiently, because the truncation errors of this model are only contributed by the dissipation terms, but those of Lin’s model are induced by the convection terms, dissipation terms and source terms. The tests show that the present model succeeds the merit in Lin’s model and the computational program is simpler, the computational time is shorter, and the computational stability is enhanced efficiently. The present model has the capability of simulating transient wave motion by correctly predicting at the speed of wave propagation, which is important for the real-time forecast of the arrival time of surface waves generated in the deep sea. The model is validated against analytical solution for wave diffraction and experimental data for combined wave refraction and diffraction over a submerged elliptic shoal on a slope. Good agreements are obtained. The model can be applied to the theory research an d engineering applications about the wave propagation in a biggish area.  相似文献   

20.
基于物理模型实验研究瞬态冲击波在台阶地形上传播过程,揭示由于反射而在海脊上出现的波浪俘获现象。结果表明:在瞬态波产生区域附近,海脊上所测到的先导波即为最大波,其由泄漏至海脊外的深水波绕射至海脊所致。随着传播距离的增加,由于频散效应的影响,先导波逐渐减小,沿台阶近似直线传播的海脊俘获波和在台阶上曲折传播的海脊俘获波逐渐显现。在距离波浪产生较远区域所测的最大波晚于先导波出现,且这些由俘获波所叠加而成的最大波随着传播距离的增加而呈现出更加复杂的波面过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号