首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
本文利用FY-4A卫星对2019年5月四川盆地实施的一次人工增雨减轻空气污染作业条件进行分析,综合分析增雨可播性,判别增雨潜力区和作业高度,为开展人工增雨作业提供可靠的依据,然后利用多普勒天气雷达、地面气象台站、空气质量指数、颗粒物污染物浓度等多种数据资料分析人工增雨作业前后作业云体宏观情况和空气质量、雨量的变化,对其作业效果进行分析。结果表明:(1)5月12日四川盆地西部有云系发展,作业前6小时作业区附近主要为积层混合云,存在大量过冷水,红色对流泡云顶温度约为-30℃,粒子有效半径为15~40μm,作业前0~3小时作业区位于深厚对流降水云边缘,云顶温度约为-40℃,粒子有效半径为7~40μm,作业区南部有大片积层混合云,提供大量过冷水;(2)作业区内,高低空配合的环流场形成了较有利的降水形势,作业云体过冷水丰沛,增雨潜力较好,符合人工播撒催化剂条件,适宜开展人工增雨作业;(3)经过人工增雨作业后,作业区雨量峰值降雨时间延长,总体雨量增加,作业区的AQI从82降到29,PM10从94μg/m3下降到28μg/m3,PM2.5从49μg/m3降到17μg/m3,而3个对比区没有实施人工增雨作业,空气质量指数持续超标数小时。   相似文献   

2.
东北冷涡云系人工增雨作业效果的检验和分析   总被引:7,自引:6,他引:7  
根据辽宁地区的东北冷涡降水天气过程的规律和特点,利用气象台站网的常规观测资料,用事后划分影响区和对比区的移动分区区域回归方法,对东北冷涡降水云系的人工增雨作业效果进行了综合分析。结果表明:(1)辽宁省1992—2004年6~8月对东北冷涡云系人工增雨作业的平均增雨效果为22.44%。(2)有95%以上的可信度证明辽宁省的人工增雨有正效果。(3)物理检验分析证明,作业方法及催化部位基本是合理的,催化作业是有效的。  相似文献   

3.
2017年2月21日河北省出现一次低槽降雪天气系统,河北省人工影响天气办公室在系统槽前部位层状云系中开展飞机云微物理探测作业,通过对邢台、赵县两地云微物理垂直结构的精细化探测分析,发现本次过程云系为层状冷云。邢台、赵县两地云系均存在明显的逆温层,在逆温层及其下方出现过冷水,邢台过冷水较为丰富含量0.19 g/m3,在温度-8~-11 ℃过冷水丰富层下方可见结凇冰晶,直径有所增大,浓度没有出现明显增加;赵县云系过冷水含量偏低0.074 g/m3,冰晶在温度-8.7~-10.3 ℃的过冷水层以凇附、粘连增长为主,冰晶聚合体比邢台偏多,粒子直径和浓度均比邢台偏大。本次探测过程,邢台云内过冷水含量丰富,具有人工增雪作业的条件;赵县云内过冷水含量偏低,人工增雪条件差。  相似文献   

4.
卫星遥感人工增雨作业条件 II:层状云   总被引:1,自引:1,他引:0  
通过卫星多光谱资料的定标,利用可见光反射率、3.7 μm和11 μm辐射亮温,反演了云顶粒子有效半径、云顶温度等云特征参数.运用图像合成技术,建立了反映云宏、微观特征的RGB合成图.利用发展的多光谱云微物理综合分析方法,通过极轨卫星分析了不同过冷层状云及其降水特征,结合增雨假设,总结出适宜人工增雨作业的卫星判据为:云厚大于1.5 km,云顶温度-5~-15℃时,有效半径小于25 μm;或云顶温度-15~-25℃时,有效半径小于15 μm.利用可见光反射率、云顶温度和有效半径多阈值建立人工增雨播云等级和分级显示.通过静止卫星跟踪云系演变,进一步确定播云部位和作业时机,指导人工增雨作业.  相似文献   

5.
利用聊城市2004-2006年春季人工增雨作业的雷达回波资料和实况资料,对13次高炮、火箭人工增雨作业云系、作业时机、部位以及催化剂量的选择进行综合分析。结果表明:聊城市高炮、火箭人工增雨的作业以混合云和层状云为主要目标云系,层状云作业效率最高,可达80.5%;层状云系作业部位应选在0℃层亮带以上,混合云系应选在强回波区附近;选择催化时机,层状云应在云顶高度大于或等于6km,回波强度大于或等于25dBz,混合云云顶高度大于或等于7.5km,回波强度大于或等于35dBz为宜;一次过程,一个作业点每波次炮弹以8~12发效果较好,火箭弹2~4枚为宜。  相似文献   

6.
湖南秋季积层混合云系飞机人工增雨作业方法   总被引:2,自引:1,他引:1       下载免费PDF全文
统计分析2007—2016年秋季湖南省长沙市地面气象观测资料、湖南省飞机人工增雨作业资料, 得到湖南省秋季积层混合云系的降水分布情况、一般结构特征和相应的飞机增雨作业方法。使用多普勒天气雷达、GRAPES_CAMS数值模式和中小尺度气象站网等资料对典型作业天气过程进行云降水物理和数值模拟分析, 采用成对对流云和基于TREC算法的回波跟踪等方法进行作业效果评估。归纳得到湖南省秋季积层混合云系人工增雨作业条件判别的12个宏微观指标, 探讨在使用运7飞机、碘化银烟条作业装备条件下, 开展飞机增雨作业的最佳催化时机、部位和剂量。针对积层混合云系中的降水性层状云系、积云对流泡, 飞机增雨适宜作业的区域、播撒高度和催化剂量:在过冷高层云的-15~-5℃层, 播撒达到30 L-1的人工冰晶浓度; 在过冷积云的-15~-7℃层, 静力催化使冰晶浓度达到30 L-1或动力催化达到100 L-1。这些方法在实践中取得了较好的人工增雨作业效果。  相似文献   

7.
利用渭南市2001—2004年人工增雨作业的雷达回波资料和实况资料,运用统计和对比的方法,对13次高炮、火箭人工增雨作业云系、作业时机、部位以及催化剂量的选择进行综合分析。总结出渭南市高炮、火箭人工增雨的作业技术要点:以混合云和层状云为主要目标云系,层状云作业效率最高,可达83.3%;层状云系作业部位应选在0oC层亮带以上,混合云系应选在强回波区附近;选择催化时机,层状云应在云顶高度≥6 km,回波强度≥25 dB z,混合云云顶高度≥7.5km,回波强度≥35 dB z为宜;一次过程,一个作业点炮弹以40发左右效果较好,火箭弹2~4枚为宜。  相似文献   

8.
该文利用机载激光云降水粒子探测数据、FY-2G静止卫星资料及其反演的云参量、上机宏观记录资料和当日08时探空资料,详细分析了2020年5月28日在贵州省西北部开展的一次飞机人工增雨作业过程中和作业后的云的宏微观物理参数。结果表明:①作业前拟作业区域有云系覆盖,云体亮度在-5~-14 ℃之间,云顶高度为3~4 km,云顶温度在0~-10 ℃之间。作业后3 h内云体亮温值明显下降,云顶温度降低至-30 ℃左右,云顶高度明显抬高,作业区5 km的范围有所扩大,表明作业后云体发展;②云降水粒子测量过程中发现,云粒子主要出现在5~6.3 km之间,降水粒子则主要存在于4~4.5 km之间,相同时刻所测量到的降水粒子比云粒子数浓度少1个量级。不同温度层级的粒子形态也不一致,0~-4.7 ℃主要是柱状冰雪晶,-6.5~-7.2 ℃主要是宽枝状、针状聚合体冰雪晶。  相似文献   

9.
对2018年飞机人工增雨作业时的77个天气样本进行分析,以大气环流形势配合冷空气入侵青海的不同路径将人工增雨降水过程分为4种环流型:两槽一脊型、东高西低型、纬向环流型、横槽转竖型。作业云系以层状云和积层混合云为主;主要作业层风速在16 m·s-1左右;作业层主导风向在230°~280°。雷达回波强度和雷达回波顶高在4种环流型中没有明显区别。卫星反演云顶高度中东高西低型云系平均发展较深厚,纬向环流型和横槽转竖型中云系发展较高但并不深厚;云顶温度最低在-40℃;最大光学厚度在13左右;过冷层厚度在2.7 km左右。云内微观条件中:有效粒子半径在13 μm左右;液水路径在东高西低型中较高在209 μm左右。  相似文献   

10.
渭南市人工增雨作业技术指标与判据   总被引:1,自引:0,他引:1  
利用渭南市1997—2006年10a 46次人工增雨过程的711雷达回波、天气形势、地面观测、实况等资料,结合近2a的多普勒雷达产品资料进行统计、对比、分析,得出渭南市高炮火箭人工增雨作业技术指标和判据。西风槽是主要影响天气系统;增雨时段2—9月,以3—7月为主;作业主要云系为层状云、对流云和混合云;首次分析出层状云0oC层亮带变化规律,强度20~35dB z,厚度0.3~0.5km,亮带高度随季节变化;根据不同云系的回波判据确定作业时机、部位、方式及用弹量;回波的移向移速也是确定作业时机的重要判据;得出多普勒雷达产品在人工增雨应用中的简易指标。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号