首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The Al‐Jawf area of northern Saudi Arabia provides spectacular outcrops of Early Devonian carbonate bioherms in the Wadi Murayr and Dumat Al‐Jandal areas. These carbonate bioherms belong to the Qasr Member of the Late Pragian–Early Emsian Jauf Formation (~405 Ma) and are surrounded by a bioclastic carbonate succession. The Qasr Member is the first major carbonate unit of the Palaeozoic succession in Saudi Arabia that mainly consists of microbialite carbonates and metazoan reefs exhibiting distinct mound features. These bioherm complexes and their associated carbonate facies are pervasively dolomitized. Stratigraphic, petrographic and geochemical analyses were conducted to determine the facies distribution and interpret their depositional and diagenetic processes. A total of 11 facies are identified from a range of depositional environments within a carbonate platform system, ranging from tidal flats, lagoon, shoal, patch reefs to reef front. The main diagenetic processes are carbonate cementation and dolomitization. Dolomitization occurred as both fabric preserved (mostly in grain‐dominated facies) and fabric destructive (mud‐dominated facies). The microbialites and coralline sponges facies show poor reservoir with visual porosity less than 5%, but this succession may have a potential to serve as a good source for the underlying and overlying facies. Ooid and peloidal grainstone facies show fair to good visual porosity that locally exceeds 10% with intergranular porosity as the dominant type. However, in the most studied samples, vuggy and intraparticle porosities are observed as the dominant type. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The Sivas Basin, located on the Central Anatolian Plateau in Turkey, is an elongate Oligo‐Miocene basin that contains numerous salt‐walled mini‐basins. Through field analysis, including stratigraphic section logging, facies analysis and geological mapping, a detailed tectono‐stratigraphic study of the Emirhan mini‐basin and its 2·6 km thick sediment fill has been undertaken. Three main palaeoenvironments are recognized – playa‐lake, braided stream and lacustrine – each corresponds to a relatively long‐lived depositional episode within a system that was dominated overall by the development of a distributive fluvial system. At local scale, this affects the geometry of the succession and influences facies distributions within preserved sequences. Sequences affected by wedge geometries are characterized by localized channelized sandstone bodies in the area of maximum subsidence and these pass laterally to floodplain mudstone towards the diaper; several internal unconformities are recognized. By contrast, sequences affected by hook geometries display narrow and steep drape‐fold geometries with no evidence of lateral facies change and apparent conformity in the preserved succession. The sediment fill of the Emirhan mini‐basin records the remobilization of diapir‐derived detritus and the presence of evaporitic bodies interbedded within the mini‐basin, implying the growth of salt walls expressed at the surface as palaeo‐topographic highs. The mini‐basin also records the signature of a regional change in stratigraphic assemblage, passing from playa‐lake facies to large‐scale highly amalgamated fluvial facies that represent progradation of the fluvial system. The initiation and evolution of this mini‐basin involves a variety of local and regional controls. Local factors include: (i) salt withdrawal, which influenced the rate and style of subsidence and consequently temporal and spatial variation in the stratigraphic assemblage and the stratal response related to halokinesis; and (ii) salt inflation, which influenced the topographic expression of the diapirs and consequently the occurrence of diapir‐derived detritus intercalated within the otherwise clastic‐dominated succession.  相似文献   

4.
The Saumane‐Venasque compound palaeovalley succession accumulated in a strongly tide‐influenced embayment or estuary. Warm‐temperate normal marine to brackish conditions led to deposition of extensive cross‐bedded biofragmental calcarenites. Echinoids, bryozoans, coralline algae, barnacles and benthic foraminifera were produced in seagrass meadows, on rocky substrates colonized by macroalgae and within subaqueous dune fields. There are two sequences, S1 and S2, the first of which contains three high‐frequency sequences (S1a, S1b and S1c). Sequence 1 is largely confined to the palaeovalley with its upper part covering interfluves. Each of these has a similar upward succession of deposits that includes: (i) a basal erosional surface that is bored and glauconitized; (ii) a discontinuous lagoonal lime mudstone or wackestone; (iii) a thin conglomerate generated by tidal ravinement; (iv) a transgressive systems tract series of cross‐bedded calcarenites; (v) a maximum flooding interval of argillaceous, muddy quartzose, open‐marine limestones; and (vi) a thin highstand systems tract of fine‐grained calcarenite. Tidal currents during stages S1a, S1b and S1c were accentuated by the constricted valley topography, whereas basin‐scale factors enhanced tidal currents during the deposition of S2. The upper part of the succession in all but S1c has been removed by later erosion. There is an overall upward temporal change with quartz, barnacles, encrusting corallines and epifaunal echinoids decreasing but bryozoans, articulated corallines and infaunal echinoids increasing. This trend is interpreted to be the result of changing oceanographic conditions as the valley was filled, bathymetric relief was reduced, rocky substrates were replaced as carbonate factories by seagrass meadows and subaqueous dunes, and the setting became progressively less confined and more open marine. These limestones are characteristic of a suite of similar cool‐water calcareous sand bodies in environments with little siliciclastic or fresh water input during times of high‐amplitude sea‐level change wherein complex inboard antecedent topography was flooded by a rising ocean.  相似文献   

5.
New evidences based on a combination of field and laboratory investigations reinforce the hypotheses that the circulation of warm fluids has remarkably contributed to the origin and development of the Devonian Kess Kess mounds of the Hamar Laghdad Ridge (eastern Anti‐Atlas, Morocco). The limestones of the Hamar Laghdad Ridge were deposited above a structural high generated by calc‐alkaline volcanic activity that has probably fuelled the circulation of warm fluids throughout the overlying carbonate units. The geological and palaeontological attributes described throughout the succession of the Hamar Laghdad Ridge (from the Lochkovian to Frasnian intervals) are interpreted as the result of hydrothermal processes related to a volcanic system. In particular, these attributes seem consistent with a chemo‐physical environment fuelled by the circulation of warm and late magmatic fluids. These attributes include a very low oxygen stable isotope signature (δ18O ~ −10‰) for carbonates. Evidences for a late magmatic fluid circulation consist of volcanic glass and pyroclasts replacement with hydrothermal minerals such as quartz, anatase and clinochlore. Fluids circulating through veins and pores into sediments, and venting to the seafloor, probably induced the formation of cavities where monospecific trilobite communities were detected. The partially silicified trilobite remains are associated with traces of goethite. This iron‐bearing oxide mineral is also present in the upper part of the Hamar Laghdad Ridge. All these attributes are here interpreted as possible evidences for a low‐temperature hydrothermal venting system active during the Lochkovian–Frasnian time span. This study combines an updated revision with new petrographic, geological and geochemical results aimed at providing an overall framework on the origin and early diagenesis of the Devonian succession of Hamar Laghdad. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract Barremian and Aptian shallow‐water carbonate facies (uppermost Lekhwair, Kharaib and Shuaiba Formations) are described from outcrops in northern Oman. Based on facies analysis and bedding pattern, three orders of depositional sequences are defined (third to fifth order) and correlated between sections. Over the course of three third‐order sequences, covering the Barremian to Lower Aptian, a third‐order depositional pattern is documented that consists of a succession of three distinct faunal assemblages: discoidal orbitolinids and calcareous algae were deposited during early transgression; microbialites and microencrusters dominate the late transgressive to early highstand facies; and a rudist‐ and miliolid‐dominated facies is typical of the highstand. This ecological succession was controlled largely by palaeoenvironmental changes, such as trophic level and clay influx, rather than sedimentological factors controlled by variations in accommodation space. Orbitolinid beds and carbonates formed by microbialites and microencrusters seem to be the shallow‐water carbonate response to global changes affecting Late Barremian to Aptian palaeoclimate and palaeoceanography.  相似文献   

7.
The Chatham Islands, at the eastern end of the Chatham Rise in the South‐west Pacific, are the emergent part of a Late Cretaceous to Cenozoic stratovolcano complex that is variably covered with limestones and fossiliferous tuffs. Most of these deposits accumulated in relatively shallow, high‐energy, tide‐influenced palaeoenvironments with deposition punctuated by periods of deeper‐water pelagic accumulation. Carbonate components in these neritic deposits are biogenic and dominated by molluscs and bryozoans – a heterozoan assemblage. The widespread Middle to Late Eocene Matanginui Limestone contains local photozoan elements such as large benthonic foraminifera (especially Asterocyclina) and calcareous green algae, reflecting the general Palaeogene sub‐tropical oceanographic setting. More localized Late Eocene to Oligocene deposits (Te One Limestone) as well as Pliocene carbonates (Onoua Limestone) are, however, wholly heterozoan and confirm a generally cooler‐water oceanographic setting, similar to today. Early sea floor diagenesis is interpreted to have removed most aragonite components (infaunal bivalves and epifaunal gastropods). Lack of aragonite resulted in the absence of intergranular calcite cementation during subaerial exposure, such that most carbonates are friable or unlithified. Cementation is, however, present at nodular hardground–firmground caps to metre‐scale cycles. Such cements are microcrystalline or micrometre‐thick isopachous circumgranular rinds with insufficient definitive attributes to pinpoint their environment of formation. The overall palaeoenvironment of deposition is interpreted as mesotrophic, resulting in part from upwelling about the Chatham volcanic massif and in part from nutrient element delivery from the adjacent volcanic terrane and coeval volcanism. Biotic diversity in tuffs is two to three times that in limestones, supporting the notion of especially high nutrient availability during periods of volcanism. These mid‐latitude deposits are strikingly different from their low‐latitude, tropical, photozoan counterparts in the volcanic island–coral reef ecosystem. Ground water seepage and fluvial runoff attenuate coral growth and promote microbial carbonate precipitation in these warm‐water settings. In contrast, nutrients from the same sources feed the system in the Chatham Islands cool‐water setting, promoting active heterozoan carbonate sedimentation.  相似文献   

8.
The nature of Phanerozoic carbonate factories is strongly controlled by the composition of carbonate‐producing faunas. During the Permian–Triassic mass extinction interval there was a major change in tropical shallow platform facies: Upper Permian bioclastic limestones are characterized by benthic communities with significant richness, for example, calcareous algae, fusulinids, brachiopods, corals, molluscs and sponges, while lowermost Triassic carbonates shift to dolomicrite‐dominated and bacteria‐dominated microbialites in the immediate aftermath of the Permian–Triassic mass extinction. However, the spatial–temporal pattern of carbonates distribution in high latitude regions in response to the Permian–Triassic mass extinction has received little attention. Facies and evolutionary patterns of a carbonate factory from the northern margin of peri‐Gondwana (palaeolatitude ca 40°S) are presented here based on four Permian–Triassic boundary sections that span proximal, inner to distal, and outer ramp settings from South Tibet. The results show that a cool‐water bryozoan‐dominated and echinoderm‐dominated carbonate ramp developed in the Late Permian in South Tibet. This was replaced abruptly, immediately after the Permian–Triassic mass extinction, by a benthic automicrite factory with minor amounts of calcifying metazoans developed in an inner/middle ramp setting, accompanied by transient subaerial exposure. Subsequently, an extensive homoclinal carbonate ramp developed in South Tibet in the Early Triassic, which mainly consists of homogenous dolomitic lime mudstone/wackestone that lacks evidence of metazoan frame‐builders. The sudden transition from a cool‐water, heterozoan dominated carbonate ramp to a warm‐water, metazoan‐free, homoclinal carbonate ramp following the Permian–Triassic mass extinction was the result of the combination of the loss of metazoan reef/mound builders, rapid sea‐level changes across Permian–Triassic mass extinction and profound global warming during the Early Triassic.  相似文献   

9.
In the Getic of the Carpatho-Balcanides (eastern Serbia) and the Tirgan Formation of the Kopet-Dagh Basin (northeast Iran), platform carbonates were deposited during the Barremian/Early Aptian in environments in the domain of the northern Alpine Tethys and deformed during the Alpine orogeny. In this study, Urgonian carbonate platform deposits are discussed in detail with regard to depositional facies, microfacies, biostratigraphy, palaeoenvironments and palaeoecology. Detailed sedimentological and palaeontological investigations have been carried out on five sections in eastern Serbia and three sections in northeast Iran supported by an analysis of 392 thin-sections. Petrographic analysis of thin-sections led to the recognition of eight microfacies types grouped into four facies zones. A supratidal–intertidal (restricted)–intertidal (open-lagoon)–platform-margin sand-shoal transition was recorded in both areas. Supratidal facies are characterized by bioclastic mudstones and fenestral and peloidal wackestones and packstones; intertidal (restricted) facies are represented by bioclastic wackestones, whereas intertidal (open-lagoon) facies are indicated by bioclastic packstones/grainstones and oncoid grainstones. High-energy sand-shoal facies are dominated by ooid grainstones/rudstones followed by orbitolinid packstones. Benthic foraminifera are especially abundant and along with calcareous algae are the most important fossils used for age determination of shallow-marine carbonate deposits. Thirty-two benthic foraminiferal genera were identified from eastern Serbia with an additional 38 genera from northeast Iran dominated by agglutinated forms. Identified calcareous algae provide significant data for depositional environments and palaeoecology. The microfossil associations in the two regions are very similar and share a number of common characteristics, but also some differences and show a strong affinity to those of the northern margins of Tethys. In both study areas shallow-marine environments of the Barremian/Early Aptian were replaced by deep-marine conditions during the Late Cretaceous.  相似文献   

10.
Triassic–Jurassic sedimentary successions (Baluti and Sarki formations) in northern Iraq record a variety of environmental changes that may be related to global Triassic–Jurassic (Tr/J) boundary events. The diversity of some benthic fauna decreases through the transitional boundary beds. The coastal marine environment of the lower part of the Baluti Formation is followed by shallower tidal flat and supratidal marginal marine environments at the transitional boundary with the Jurassic‐age Sarki Formation. The alternating calcareous mudrocks and dolomitic limestones of the transitional succession are overlain by a succession of calcareous mudrocks and dolomicrites that form a dolocrete bed in the latest Triassic. The early Jurassic carbonates (lower part of Sarki Formation) were deposited in a shallow‐marine to lagoonal environment. Geochemical evidence supports this interpretation. TOC% increases towards the Tr/J boundary and the lower part of the Sarki Formation. This increase can be interpreted as resulting from the primary precipitation of dolocrete as palaeosol horizons. The variations in the oxygen isotope ratios mainly reflect the facies and diagenetic effects. Th/K ratio is generally constant and shows an increase in the calcareous mudrock beds of the upper part of the Baluti Formation, possibly related to the degradation of K‐bearing clay minerals. Low Th/U ratios are due to the depletion in thorium, typical of many marine carbonates rather than to an increase in authigenic uranium. This explanation is also corroborated by the presence of abundant fossils in some of the studied carbonates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The Darlington (Sakmarian) and Berriedale (Artinskian) Limestones are neritic deposits that accumulated in high‐latitude environments along the south‐eastern margin of Pangea in what is now Tasmania. These rocks underwent a series of diagenetic processes that began in the marine palaeoenvironment, continued during rapid burial and were profoundly modified by alteration associated with the intrusion of Mesozoic igneous rocks. Marine diagenesis was important but contradictory; although dissolution took place, there was also coeval precipitation of fibrous calcite cement, phosphate and glauconite, as well as calcitization of aragonite shells. These processes are interpreted as having been promoted by mixing of shelf and upwelling deep ocean waters and enabled by microbial degradation of organic matter. In contrast to warm‐water carbonates where meteoric diagenesis is important, the Darlington and Berriedale Limestones were largely unaffected by meteoric diagenesis. Only minor dissolution and local cementation took place in this diagenetic environment, although mechanical compaction was ubiquitous. Correlation with burial history curves indicates that chemical compaction became important as burial depths exceeded 150 m, promoting precipitation of extensive ferroan calcite. This effect resulted from burial by rapidly deposited, overlying, thick, late Permian and Triassic terrestrial sediments. This diagenetic pathway was, however, complicated by the subsequent intrusion of massive Mesozoic diabases and associated silicifying diagenetic fluids. Finally, fractures most probably connected with Cretaceous uplift were filled with late‐stage non‐ferroan calcite cement. This study suggests that both carbonate dissolution and precipitation occur in high‐latitude marine palaeoenvironments and, therefore, the cold‐water diagenetic realm is not always destructive in terms of diagenesis. Furthermore, it appears that for the early Permian of southern Pangea at least, there was no real difference in the diagenetic pathways taken by cool‐water and cold‐water carbonates.  相似文献   

12.
Locally exposed Middle to Upper Eocene conglomerates in the western part of the Cenozoic Thrace Basin are interpreted as products of continuous marine erosion of a rocky coast (consisting of Lower Cretaceous carbonates) and subsequent redeposition of the land‐derived limestone material in a wave‐dominated nearshore setting during a prolonged transgression. Contemporaneous biological activity in the warm‐temperate marine environment contributed to the accumulation of mixed coarse‐grained clastic–carbonate sediments on the upper shoreface. The formation of a relatively thick sedimentary succession was favoured by the interplay of several controlling factors as only shoreface deposits were preserved in the rock record. The results may help to elucidate the evolution of the hydrocarbon‐bearing Thrace Basin and to assist with the regional correlation of its basal deposits. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Since their first occurrence in the late Cretaceous, seagrasses have played a major role in carbonate production and sedimentation across shallow-water and nearshore environments, sustaining a prolific carbonate factory and contributing to sediment accumulation through the combination of baffling and trapping effects. Most reported Palaeogene seagrass occurrences developed in oligo?mesotrophic shallow warm-water habitats and are characterized by distinct associations of small and larger benthic foraminifers adapted to low terrigenous influence. This study describes a number of seagrass episodes interbedded in the Bartonian (middle Eocene) of San Fausto–Lazkua area (Navarra region, North Spain), within a nearshore to inner-ramp succession that, in spite of being deposited under general transgressive conditions, was highly influenced by terrigenous supply from the adjacent land. Up to twelve different seagrass bed intervals occur interbedded in a cyclical manner with high-energy nearshore siliciclastics and inner ramp bioclastic carbonates rich in mesophotic?oligophotic foraminifers and heterozoan biota (red algae, echinoderms, bryozoans). Seagrass deposits exhibit typical unsorted textures, abundant bioturbation and moderate to high terrigenous content, and comprise a characteristic skeletal association of epiphytic foraminifers, red algae and, most particularly, of abundant encrusting acervulinids, commonly with distinct hooked and tubular growth forms. This abundance of suspension-feeders relative to autotrophs and mixotrophs may be indicative of temperate waters, although the taxonomic diversity of the foraminiferal assemblages in both seagrass and non-seagrass embedding deposits supports the interpretation of shallow, warm-water conditions. The studied seagrass deposits provide evidence that high siliciclastic supply and associated nutrient input may determine the occurrence of temperate-like seagrass deposits in warm-water settings, analogous to extensive heterozoan carbonate production in modern shallow-tropical environments. Thus, the identification and correct interpretation of past seagrass-vegetated environments are crucial for reconstructing palaeoecological conditions in ancient shallow-marine environments. Therefore, in comparison with carbonate-dominated environments, the mixed terrigenous?carbonate seagrass deposits are volumetrically less important, presenting a more irregular, patchy distribution, and a skeletal assemblage dominated by heterotrophs, regardless of the water temperature.  相似文献   

14.
Seagrasses are marine angiosperms that form extensive submarine meadows in the photic zone where carbonate producing biota dwell as epiphytes on the leaves or as infaunal forms, and act as prolific carbonate sediment factories. Because seagrasses have a low preservation potential and records of exceptionally well‐preserved and plant material from marine settings are rare, these palaeoenvironments are difficult to identify in the rock record. Consequently, sedimentological and palaeontological proxies are the main indicators of the presence of seagrass‐dominated ecosystems. This work investigates the skeletal assemblage of Modern (Maldivian and western Mediterranean) and fossil (Eocene; Apula and Oman carbonate platforms and Oligocene; Malta platform) seagrass examples to characterize the skeletal assemblage of modern and fossil seagrasses. Two main types of grains, calcareous algae and foraminifera, constitute around 50% of the bioclastic sediment in both tropical Maldivian and temperate Mediterranean scenarios. However, in the tropical setting they are represented by green algae (Halimeda), while in the Mediterranean they are represented by corallinacean red algae. In contrast, in the Eocene examples, the foraminifera are the most conspicuous group and the green algae are also abundant. The opposite occurs in the Maltese Chattian, which is dominated by coralline algae (mean 42%), although the foraminifera are still abundant. It is suggested to use the term foralgal to identify the seagrass skeletal assemblage. To discriminate between red algae and green algae dominance, the introduction of the prefixes ‘GA’ (green algae) and ‘RA’ (red algae) is proposed. The investigated examples provide evidence that the green algae–foralgal assemblage is typical of tropical, not excessively dense seagrass meadows, characterized by a well‐illuminated substrate to support the development and calcification of the Halimeda thallus. Contrarily, the red algae‐foralgal assemblage is typical of high density tropical to subtropical seagrass meadows which create very dense oligophotic conditions on the sea floor or in temperate settings where Halimeda cannot calcify.  相似文献   

15.
The Bridport Sand Formation is an intensely bioturbated sandstone that represents part of a mixed siliciclastic‐carbonate shallow‐marine depositional system. At outcrop and in subsurface cores, conventional facies analysis was combined with ichnofabric analysis to identify facies successions bounded by a hierarchy of key stratigraphic surfaces. The geometry of these surfaces and the lateral relationships between the facies successions that they bound have been constrained locally using 3D seismic data. Facies analysis suggests that the Bridport Sand Formation represents progradation of a low‐energy, siliciclastic shoreface dominated by storm‐event beds reworked by bioturbation. The shoreface sandstones form the upper part of a thick (up to 200 m), steep (2–3°), mud‐dominated slope that extends into the underlying Down Cliff Clay. Clinoform surfaces representing the shoreface‐slope system are grouped into progradational sets. Each set contains clinoform surfaces arranged in a downstepping, offlapping manner that indicates forced‐regressive progradation, which was punctuated by flooding surfaces that are expressed in core and well‐log data. In proximal locations, progradational shoreface sandstones (corresponding to a clinoform set) are truncated by conglomerate lags containing clasts of bored, reworked shoreface sandstones, which are interpreted as marking sequence boundaries. In medial locations, progradational clinoform sets are overlain across an erosion surface by thin (<5 m) bioclastic limestones that record siliciclastic‐sediment starvation during transgression. Near the basin margins, these limestones are locally thick (>10 m) and overlie conglomerate lags at sequence boundaries. Sequence boundaries are thus interpreted as being amalgamated with overlying transgressive surfaces, to form composite erosion surfaces. In distal locations, oolitic ironstones that formed under conditions of extended physical reworking overlie composite sequence boundaries and transgressive surfaces. Over most of the Wessex Basin, clinoform sets (corresponding to high‐frequency sequences) are laterally offset, thus defining a low‐frequency sequence architecture characterized by high net siliciclastic sediment input and low net accommodation. Aggradational stacking of high‐frequency sequences occurs in fault‐bounded depocentres which had higher rates of localized tectonic subsidence.  相似文献   

16.
The upper portion of the Cuyo Group in the Zapala region, south‐eastern Neuquén Basin (Western Argentina), encompasses marine and transitional deposits (Lajas Formation) overlain by alluvial rocks (Challacó Formation). The Challacó Formation is covered by the Mendoza Group above a second‐order sequence boundary. The present study presents the stratigraphic framework and palaeophysiographic evolution of this Bajocian to Eo‐Calovian interval. The studied succession comprises the following genetic facies associations: (i) offshore and lower shoreface–offshore transition; (ii) lower shoreface; (iii) upper shoreface; iv) intertidal–subtidal; (v) supratidal–intertidal; (vi) braided fluvial to delta plain; (vii) meandering river; and (viii) braided river. The stratigraphic framework embraces four third‐order depositional sequences (C1 to C4) whose boundaries are characterized by the abrupt superposition of proximal over distal facies associations. Sequences C1 to C3 comprise mostly littoral deposits and display well‐defined, small‐scale transgressive–regressive cycles associated with fourth‐order depositional sequences. Such high‐frequency cycles are usually bounded by ravinement surfaces associated with transgressive lags. At last, the depositional sequence C4 delineates an important tectonic reorganization probably associated with an uplift of the Huincul Ridge. This is suggested by an inversion of the transport trend, north‐westward during the deposition of C1 to C3 depositional sequences (Lajas Formation) to a south‐west trend during the deposition of the braided fluvial strata related to the C4 depositional sequence (Challacó Formation).  相似文献   

17.
A thick succession of shelf and shelf-slope carbonates is developed in southeastern Sicily. Sedimentological aspects of the Oligocene to Tortonian sequence, including distribution and palaeoenvironmental factors, are considered. A new formation and four new members are proposed in the upper part of the succession.The region comprises a western half, typically exhibiting the principal deeper-water planktonic facies including marls, and an eastern area displaying typically inner-shelf carbonates and an attenuated succession. Coralline algal limestones and calcarenites are more typical of this latter region but there are also some volcanic intercalations. An attempt is made to relate the Hyblean succession to that of the Maltese Islands which lie at the southern end of this Tertiary carbonate platform.  相似文献   

18.
Late Mississippian carbonates in southern Montagne Noire are dominantly domical to laterally‐accreted microbial mounds in some formations, as well as stratiform microbial limestones occurring in hundreds of olistoliths within a flysch basin, constituting pieces of a giant puzzle that are used to help reconstruct a platform in a region that is no longer preserved. Petrographic data of limestone samples from 14 continuous long sections of olistoliths have been analyzed statistically, using multivariate clustering (Q‐mode) of the components/matrix/cement and canonical correspondence analysis that allow the reconstruction of the environmental parameters of carbonate microbial communities in space and time. Clustering analysis separated microbial and non‐microbial facies. The calculation of indices along the various axes from canonical correspondence analysis allows recognition of the controlling factors of the mounds and microbial growth as being turbidity, light penetration, bathymetry and storms. Turbidity and light penetration are the primary factors controlling the morphology of the microbial limestones. Representation of the light penetration and bathymetry indices on the stratigraphical sections defines two vertical environmental gradients. Light penetration can be subdivided into euphotic, euphotic–dysphotic and dysphotic‐aphotic conditions. The representation of the bathymetry allows the subdivision of samples into a deeper outer ramp, external mid‐ramp and internal mid‐ramp. The curve distance from the section base = f (index) suggests a cyclicity for the platform that cannot be compared with the onlap curve defined from other cratonic areas (Moscow Basin), and thus the cyclic succession of the Montagne Noire is interpreted to have been mostly tectonically‐controlled. Integration of the data allowed the reconstruction of the original Mississippian carbonate platform, where, up to the Mikhailovian, it appears to correspond to a platform morphology, with narrow shallow water facies and wide turbiditic systems, whereas the width of shallow‐water settings expanded during the Venevian to the Protvian, forming a ramp or distally‐steepened ramp with widespread microbial limestones.  相似文献   

19.
Hybrid depositional systems are created by the interaction of two or more hydrodynamic processes that control facies distribution and their characteristics in terms of sedimentary structures and depositional geometry. The interaction of wave and tide both in the geological sedimentary record and modern environments has been rarely described in the literature. Mixed coastal environments are identified by the evidence of wave and tidal structures and are well identified in nearshore environments, while their recognition in lower shoreface–offshore environments lacks direct information from modern settings. Detailed field analyses of 10 stratigraphic sections of the Lower Ordovician succession (Fezouata and Zini formations; Anti‐Atlas, Morocco) have allowed the definition of 14 facies, all grouped in four facies zones belonging to a storm‐dominated, wave‐dominated sedimentary siliciclastic system characterized by symmetrical ripples of various scales. Peculiar sedimentary organization and sedimentary structures are observed: (i) cyclical changes in size of sedimentary structures under fair‐weather or storm‐weather conditions; (ii) decimetre‐deep erosional surfaces in swaley cross‐stratifications; (iii) deep internal erosion within storm deposits; (iv) discontinuous sandstone layers in most depositional environments, and common deposition of sandstones with a limited lateral extension, interpreted to indicate that deposition at all scales (metric to kilometric) is discontinuous; (v) combined flow–oscillation ripples showing aggrading–prograding internal structures alternating with purely aggrading wave ripples; and (vi) foreshore environments characterized by alternating phases of deposition of parallel stratifications, small‐scale and large‐scale ripples and tens of metres‐wide reactivation surfaces. These characteristics of deposition suggest that wave intensity during storm‐weather or fair‐weather conditions was continuously modulated by another controlling factor of the sedimentation: the tide. However, tidal structures are not recognized, because they were probably not preserved due to dominant action of storms and waves. A model of deposition is provided for this wave‐dominated, tide‐modulated sedimentary system recording proximal offshore to intertidal–foreshore environments, but lacking diagnostic tidal structures.  相似文献   

20.
Spencer Gulf is a large (ca 22 000 km2), shallow (<60 m water depth) embayment with active heterozoan carbonate sedimentation. Gulf waters are metahaline (salinities 39 to 47‰) and warm‐temperate (ca 12 to ?28°C) with inverse estuarine circulation. The integrated approach of facies analysis paired with high‐resolution, monthly oceanographic data sets is used to pinpoint controls on sedimentation patterns with more confidence than heretofore possible for temperate systems. Biofragments – mainly bivalves, benthic foraminifera, bryozoans, coralline algae and echinoids – accumulate in five benthic environments: luxuriant seagrass meadows, patchy seagrass sand flats, rhodolith pavements, open gravel/sand plains and muddy seafloors. The biotic diversity of Spencer Gulf is remarkably high, considering the elevated seawater salinities. Echinoids and coralline algae (traditionally considered stenohaline organisms) are ubiquitous. Euphotic zone depth is interpreted as the primary control on environmental distribution, whereas seawater salinity, temperature, hydrodynamics and nutrient availability are viewed as secondary controls. Luxuriant seagrass meadows with carbonate muddy sands dominate brightly lit seafloors where waters have relatively low nutrient concentrations (ca 0 to 1 mg Chl‐a m?3). Low‐diversity bivalve‐dominated deposits occur in meadows with highest seawater salinities and temperatures (43 to 47‰, up to 28°C). Patchy seagrass sand flats cover less‐illuminated seafloors. Open gravel/sand plains contain coarse bivalve–bryozoan sediments, interpreted as subphotic deposits, in waters with near normal marine salinities and moderate trophic resources (0·5 to 1·6 mg Chl‐a m?3) to support diverse suspension feeders. Rhodolith pavements (coralline algal gravels) form where seagrass growth is arrested, either because of decreased water clarity due to elevated nutrients and associated phytoplankton growth (0·6 to 2 mg Chl‐a m?3), or bottom waters that are too energetic for seagrasses (currents up to 2 m sec?1). Muddy seafloors occur in low‐energy areas below the euphotic zone. The relationships between oceanographic influences and depositional patterns outlined in Spencer Gulf are valuable for environmental interpretations of other recent and ancient (particularly Neogene) high‐salinity and temperate carbonate systems worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号