首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
采用球函数分析方法,对全球500hPa大气月平均位势高度场(1948-1999年)的气候及其异常的时空结构作了简要分析;给出利用球谐函数进行分析及研究的方法及步骤,给出南、北半球500hPa环流异常相对强度及500hPa月平均高度场的拟合率。  相似文献   

2.
用北、南半球500hPa月平均位势高度场球函数系数资料代替格点资料,用区域降水指数表示华北、江淮、华南五区汛期(6~8月)降雨。通过引进复相关系数和构造复相关系数场模.分析了半球500hPa环流与我国东部汛雨异常的同时和时滞相关联系。在此基础上.选取5月份北半球、1月份南半球球函数系数与东部汛期降水作时滞的奇异值分解。由此得到的预测关系在1998~2001年汛期降水预报试验中取得了一定效果,从而对500hPa环流的球函数系数资料在区域月、季长期天气预报中的应用作了有益的尝试。  相似文献   

3.
北半球500hpa月高度距平场的球函数谱结构   总被引:3,自引:6,他引:3  
给出了用场集球函数展开系数分析其距平场集模方球函数谱结构的方案。用1951 ̄1986年1、7月北半球500hpa高度场球函数展开系数,分析了距平均的球函数谱结构。结果表明,它们具有低维、低阶的特点,距平环流的基本特征及季节、年际变化可以用不足50个球函数分量较精确地描述。  相似文献   

4.
为了研究全球大气位势高度场的气候变率, 利用NCEP/NCAR再分析资料, 按照距平高度场平均强度指数 (Ia) 分析发现, 半球距平高度场强度呈年单周振荡, 冬大夏小, 冬季随高度单调增大, 夏季有弱高、低值中心出现, 而北、南半球的差异明显表现在季节变化上; 进一步根据半球大气位势高度距平场球函数谱低维、低阶的基本特征, 将半球环流异常分为半球均匀异常 ( H ′00)、纬向均匀异常 ( H ′0)、超长波尺度异常 ( H ′ul) 和长波尺度异常 ( H ′l) 4种类型, 用波数域0≤m, k≤6上的球函数系数资料求得它们的方差贡献, 给出了4类异常的方差贡献随高度、季节变化的规律以及它们的半球际差异。由此得到异常环流球函数谱结构的总体特征为:对流、平流层之间存在明显变化。从对流层进入平流层, 一般由超长波异常为主转为纬向均匀异常为主 (冬半球) 或半球均匀为主 (夏半球); 半球均匀异常在对流层中不重要, 长波尺度异常在平流层中不重要, 它们拟合异常方差一般均小于10%; 北、南半球最大差异表现在冬季平流层R′00和冬、夏季对流层R′0南半球大于北半球, 冬、夏季对流层R′l北半球大于南半球。  相似文献   

5.
朱福康 《气象学报》1964,34(1):31-40
本文对北半球多年月平均500毫巴图上60°N和30°N纬圈的高度和纬圈平均的经向运动动能进行了波谱分析,探讨了前3个波幅和位相角的季节变化,以及在高低纬度之间的差异。主要结果如下:1位势场的高度主要贡献,集中在准静止长波范围内,并具有明显的季节变化。2波数为1的波在高低纬度性质有显著的不同,其分界线大约在50°-60°N之间。此外,准静止的长波愈向低纬度去逐渐有向西偏移的现象。例如,在30°N上准静止的长波比60°N上要偏西(1/4)-(1/2)波长。360°N纬圈平均的经向运动动能主要部分亦集中在准静止长波范围内。虽然峰值有明显的季节变化,但最大的极值都出现在波数n=2-4之间。30°N纬圈平均的经向运动动能谱有着明显的季节变化,大致可分成如下3个类型:(1)冬季型:纬圈平均的经向运动动能谱存在着两个极值,最大的极值稳定于准静止长波范围内(n=3附近),次极植位于移动性行星波范围内(n=5-8)。(2)夏季型:纬圈平均的经向运动动能谱只有一个极值,稳定于波数为6-7的波内。(3)过渡型:纬圈平均的经向运动动能谱分布较平坦,没有稳定的极值存在。  相似文献   

6.
500hPa月平均高度场球函数谱异常与陕西旱涝的关系   总被引:1,自引:0,他引:1  
杜川利  王盘兴  李丽萍 《气象》2004,30(9):45-49
使用NCEP/NCAR再分析资料中的 50 0hPa月平均高度场资料及其主要球函数系数和陕西测站月降水量资料 ,结合陕西分区春、夏季旱涝长期预报的实际问题 ,探讨半球月平均 50 0hPa月平均高度场的球函数系数资料在长期天气预报中的应用的途径。发现基于区域降水指数 (IR)定义的陕西区域春、夏季旱涝指数I与历史实况相符 ,而球函数系数的年际异常具有低维、低阶特性 ,可以利用它们作为预报量、预报因子的参数 ;对春、夏季旱涝指数与同期和前期环流异常的相关分析表明 ,北半球环流异常与陕西各区春、夏旱涝的出现相关联系显著 ,南半球环流异常与陕西春、夏旱涝出现的相关联系总体上不显著。  相似文献   

7.
柴佳明  朱坚 《气象科学》2024,44(2):246-253
利用中国气象局提供的1960—2019年江南区站点观测逐日降水数据,分析了江南春雨不同持续时长雨日的变化及其与欧亚大陆积雪的联系。结果表明,江南春雨以持续5 d及以上的长持续降水为主,但降水日数下降趋势明显,导致长持续降水减少。利用奇异值分解法(Singular Value Decomposition,SVD)发现,欧亚大陆3—5月积雪覆盖率与江南春雨雨日数有显著正相关关系。将(48°~59°N,90°~110°E)区域平均积雪覆盖率定义为积雪覆盖指数,通过指数与同期大气环流的回归分析发现,当积雪偏少时,我国中北部及西伯利亚地区500 hPa位势高度正异常,在江南区850 hPa风场和水汽通量场西南向负异常,导致江南春雨雨日数减少。合成分析进一步验证了积雪偏少会在江南区形成异常东北风抑制水汽输送至江南地区,不利于降水发生。  相似文献   

8.
全球大气气候位势高度场的时空结构分析   总被引:4,自引:1,他引:3  
用半球气候高度场强度(ICF)和改进了的球函数分析方案,分析了NCEP/NCAR再分析项目的全球40a月平均高度场资料。结果表明,全球ICF存在明显季节、重直差异。而气候高度场球函数谱结构具有低阶、低维特征,其纬向均匀特征明显;通常这些特征冬强夏弱、随高度上升而增强,但在环流发生重大变化的季节(春、秋)及层次(50~100hPa)例外。气候高度场的半球际差异表现在南半球ICF明显强于北半球,其气候  相似文献   

9.
使用NCEP/NCAR的500hPa月平均位势高度场球函数展开系统资料,分析了北、南半球1、7月具有较大年际异常方差贡献的5种低阶球函数(全波数n=0-4)分量振幅异常的持续性,以及它们与热带太平洋海表温度年际异常的关系。结果表明:振幅异常的持续性随n增大迅速减小,明显的持续性只存在于少数低n值超长波分量;均匀球函数分量振幅异常的持续性显著,且存在季节、半球际差异;北、南半球均匀球函数分量(n=0)振幅异常呈准同步变化,它们与热带太平洋SSTA在ENSO尺度上准同步;南半球n=2的带型球函数分量振幅异常也具有较强的持续性,且其变化与热带太平洋SSTA在年代际尺度上准同步。  相似文献   

10.
文章提出了一个四维经验正交函数(4D-EOF)方法,原理是三维经验正交函数(3D-EOF)与扩展经验正交函数(EEOF)简单的组合,此方法不仅提供空间水平分布特征场及其对应的月际变化特征和年际变化特征,而且还提供空间垂直结构特征。利用这个新方法分析东亚季风国际区域模式比较计划(RMIP)MM5V3模拟的1989—1998年10a积分结果———包括中国大部分区域(4941个格点,格距60km)月平均100,500,700,1000hPa4个位势高度场(模拟场)及其距平场;同时分析对应的NCAR/NCEP再分析资料(观测场),进而对比两者检验模式模拟东亚季风气候及其变化能力。对比分析结果表明:对于月平均高度场的第一特征向量场,模式能比较准确地模拟出平均气候场的分布及其垂直相当正压性的结构特征;对于月平均高度距平场第一、二特征向量场,模式对于距平场的模拟也较成功,垂直方向有明显的相当正压性特征;月平均高度场及其距平场相应的月际变化和年际变化特征也在模拟中得到较好的反映。本研究表明:4D-EOF具有综合检验数值模式模拟气候及其变化的能力,而MM5V3模拟20世纪90年代东亚气候及其变化能力是令人满意的。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

15.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

16.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

17.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

18.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

19.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

20.
Hourly outgoing longwave radiation(OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite(COMS) has been retrieved since June 2010. The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels. This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm(OLR12.0using the 12.0 μm channel) and three multiple-channel algorithms(OLR10.8+12.0using the 10.8 and 12.0 μm channels; OLR6.7+10.8using the 6.7 and 10.8 μm channels; and OLR All using the 6.7, 10.8, and 12.0 μm channels). The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System(CERES) over the full COMS field of view [roughly(50°S–50°N, 70°–170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5–7 W m-2, which indicates good agreement with CERES OLR over the vast domain. OLR6.7+10.8and OLR All have much smaller errors(~ 6 W m-2) than OLR12.0and OLR10.8+12.0(~ 8 W m-2). Moreover, the small errors of OLR6.7+10.8and OLR All are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration. These results indicate a noteworthy role of the6.7 μm water vapor absorption channel in improving the accuracy of the OLRs. The dependence of the accuracy of COMS OLRs on various surface, atmospheric, and observational conditions is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号