首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
This paper presents the use of a modular raft Wave Energy Converter (WEC)-type attachment at the fore edge of a rectangular Very Large Floating Structure (VLFS) for extracting wave energy while reducing hydroelastic responses of the VLFS under wave action. The proposed modular attachment comprises multiple independent auxiliary pontoons (i.e. modules) that are connected to the fore edge of the VLFS with hinges and linear Power Take-Off (PTO) systems. For the hydroelastic analysis, the auxiliary pontoons and the VLFS are modelled by using the Mindlin plate theory while the linear wave theory is used for modelling the fluid motion. The analysis is performed in the frequency domain using the hybrid Finite Element-Boundary Element (FE-BE) method. Parametric studies are carried out to investigate the effects of pontoon length, PTO damping coefficient, gap between auxiliary pontoons, and incident wave angle on the power capture factor as well as reductions in the hydroelastic responses of the VLFS with the modular attachment. It is found that in oblique waves, the modular attachment comprising multiple narrow pontoons outperforms the corresponding rigid attachment that consists of a single wide pontoon with respect to the power capture factor and the reduction in the deflection of the VLFS. In addition, it is possible to have a considerable gap between pontoons without significantly compromising the effectiveness of the modular attachment.  相似文献   

2.
Based on the lumped-mass method and rigid-body kinematics theory, a mathematical model of a gravity cage system attacked by irregular waves is developed to simulate the hydrodynamic response of cage system, including the maximum tension of mooring lines and the motion of float collar. The normalized response amplitudes (response amplitude operators) are calculated for the cage motion response in heave and surge, and the mooring line tension response, in regular waves. In addition, a statistical approach is taken to determine the motion and tension transfer functions in irregular waves. In order to validate the numerical model of a gravity cage attacked by irregular waves, numerical predictions have been compared with the experimental observations in the time and frequency domain. The effect of wave incident angle on the float collar motion, mooring line tension and net volume reduction of the gravity cage system in irregular waves is also investigated. The results show that at high frequencies, the cage system has no significant heave motion. It tends to contour itself to longer waves. The variation amplitude of mooring line forces decreases as the wave frequency increases. With the increasing of wave incident angle, the horizontal displacement of the float collar increases.  相似文献   

3.
In actual sea states, damage to offshore floating structures is usually caused by a few extreme waves or wave groups in an irregular wave train. Accurate simulation of the irregular wave trains can lay a solid foundation for understanding the local flow field and impact loads that would potentially cause such damage. This paper describes how the generation of a single extreme wave was investigated. Determination of the wave-maker motion for generating specified irregular wave trains is the key to this work. First, an experimental irregular wave train was decomposed into a certain number of small-amplitude waves. Fourier series expansion was performed to determine the amplitude and the initial phase angle of each wave component. Then a hydrodynamic transfer function was used to calculate the amplitude of the wave-maker motion associated with each wave component. Superposition was made on all the wave components to get the final wave-maker motion. During the numerical simulation, calculated horizontal velocity profiles of the extreme wave at different moments were analyzed and compared with experimental results, and a satisfactory agreement was obtained. In the simulation, VOF method was employed to capture the free surface, and a dissipation zone was used to deal with wave reflection.  相似文献   

4.
The hydrodynamic properties of long rigid floating pontoon interacting with linear oblique waves in water of finite arbitrary depth are examined theoretically. The flow is idealized as linearized, velocity potentials are expressed in the form of eigen-function expansions with unknown coefficients. The fluid domain is split into three regions, region (1) wave-ward of the structure, region (2) in the lee of the structure, and region (3) beneath the structure. The different hydrodynamic quantities of interest such as the exciting forces, added mass and damping coefficients, reflection and transmission coefficients were studied for an applicable range of wave/structure parameters. Assuming rigid body motions, dynamic responses of the moored structure is approximately calculated through three equations of motion. Floating pontoons proved to be a convenient alternative for protection from waves in shallow water. The present method of solution was found to be computationally efficient, and results are comparable to those obtained through other techniques.  相似文献   

5.
To investigate the dynamics of submersible mussel rafts, the finite element program Aqua-FE?, developed by the University of New Hampshire (UNH), was applied to rafts moored at the surface and submerged. The submerged configuration is used to reduce wave forcing and to avoid contact with floating ice during winters in northern waters. Each raft consists of three pontoons connected by a grid framework. Rafts are intended to support densely spaced mussel ropes hung from the framework. When submerged, the pontoons are flooded, and the raft is held vertically by floats attached by lines. The computer models were developed in Aqua-FE? to simulate the effects of waves and current. They were validated by comparison with wave tank results by use of a 1/10 scale raft physical model. Comparisons showed good agreement for the important heave (vertical) and pitch (rotational) motions, though there was a tendency towards conservative results for wave and current drag. Full-scale simulations of surface and submerged single raft and two rafts connected in tandem were performed. Submerged raft wave response was found to be reduced relative to that at the surface for both the single and two-raft configurations. In particular, the vertical motion of mussel rope connection points was significantly reduced by submergence, resulting in reduced potential for mussel drop-off. For example, the maximum vertical velocities of mussel rope attachment points in the submerged two raft case were 7%?20% of the corresponding velocities when at the surface.  相似文献   

6.
陈晨  尤云祥  陈科 《海洋工程》2018,36(4):28-38
针对半潜式平台的立柱群和沉箱群,设计了两套独立的载荷测量系统,利用大型重力式密度分层水槽,在不同来波方向下对孤立波中半潜式平台载荷进行了系列模型试验。研究表明,对平台立柱部分,其内孤立波载荷可以用Morison公式进行计算,基于试验结果建立了Morison公式中其拖曳力系数以及惯性力系数的经验公式;对于半潜式平台的沉箱部分,当来波方向与其中纵剖面不平行时,其水平内孤立波载荷同样可以使用Morison公式进行计算,并建立了Morison公式中其拖曳力系数以及惯性力系数的经验公式;当来波方向与半潜式平台中纵剖面平行时,沉箱群的水平内孤立波载荷可以采用Froude-Krylov公式进行计算;同时,在不同来波方向下沉箱群的垂向载荷同样可以采用Froude-Krylov公式进行计算。  相似文献   

7.
Zhang  Hao-chen  Liu  Shu-xue  Li  Jin-xuan  Wang  Lei 《中国海洋工程》2019,33(2):160-171
With growing computational power, the first-order wave-maker theory has become well established and is widely used for numerical wave flumes. However, existing numerical models based on the first-order wave-maker theory lose accuracy as nonlinear effects become prominent. Because spurious harmonic waves and primary waves have different propagation velocities, waves simulated by using the first-order wave-maker theory have an unstable wave profile. In this paper, a numerical wave flume with a piston-type wave-maker based on the second-order wave-maker theory has been established. Dynamic mesh technique was developed. The boundary treatment for irregular wave simulation was specially dealt with. Comparisons of the free-surface elevations using the first-order and second-order wave-maker theory prove that second-order wave-maker theory can generate stable wave profiles in both the spatial and time domains. Harmonic analysis and spectral analysis were used to prove the superiority of the second-order wave-maker theory from other two aspects. To simulate irregular waves, the numerical flume was improved to solve the problem of the water depth variation due to low-frequency motion of the wave board. In summary, the new numerical flume using the second-order wave-maker theory can guarantee the accuracy of waves by adding an extra motion of the wave board. The boundary treatment method can provide a reference for the improvement of nonlinear numerical flume.  相似文献   

8.
—An experimental study of regular wave and irregular wave breaking is performed on a gentleslope of 1:200.In the experiment,asymmetry of wave profile is analyzed to determine its effect on wavebreaker indices and to explain the difference between Goda and Nelson about the breaker indices of regu-lar waves on very mild slopes.The study shows that the breaker index of irregular waves is under less influ-ence of bottom slope i,relative water depth d/L_0 and the asymmetry of wave profile than that of regularwaves.The breaker index of regular waves from Goda may be used in the case of irregular waves, whilethe coefficient A should be 0.15.The ratio of irregular wavelength to the length calculated by linear wavetheory is 0.74.Analysis is also made on the waveheight damping coefficient of regular waves after break-ing and on the breaking probability of large irregular waves.  相似文献   

9.
The sloshing waves in a three dimensional (3D) tank are analysed using a finite element method based on the fully non-linear wave potential theory. When the tank is undergoing two dimensional (2D) motion, the calculated results are found to be in very good agreement with other published data. Extensive calculation has been made for the tank in 3D motion. As in 2D motion, in addition to normal standing waves, travelling waves and bores are also observed. It is found that high pressures occur in various circumstances, which could have important implications for many engineering designs.  相似文献   

10.
Characteristic features of the internal flow field of short wind waves are described mainly on the basis of streamline patterns measured for four different cases of individual wave. In some waves a distinct high vorticity region, with flow in excess of the phase speed in the surface thin layer, is formed near the crest as shown in Part I of this study, but the streamlines are found to remain quite regular even very near the water surface. The characteristics of flow in the high vorticity region are investigated, and it is argued that the high vorticity region is not supported steadily in individual waves but that growth and attenuation in individual waves repeats systematically, without no severe wave breaking. Below the surface vorticity layer a quite regular wave motion dominates. However, this wave motion is strongly affected by the presence of the high vorticity region. By comparing the measured streamline profiles with those predicted from wave profiles by the use of a water-wave theory, it is found that the flow of the wind waves studied cannot be predicted, even approximately, from the surface displacements, in contrast to the case of pure irrotational water waves.  相似文献   

11.
Wind-wave tunnel experiments reveal, by use of techniques of the flow visualization, that wind waves are accompanied by the wind drift surface current with large velocity shear and with horizontal variation of velocity relative to the wave profile. The surface current converges from the crest to a little leeward face of the crest, making a downward flow there, even though the wave is not breaking. Namely, wind waves are accompanied by forced convections relative to the crests of the waves. Since the location of the convergence and the downward flow travels on the water surface as the crest of the wave propagates, the motion as a whole is characterized by turbulent structure as well as by the nature of water-surface waves. In this meaning, the term of real wind waves is proposed in contrast with ordinary water waves. The study of real wind waves will be essential in future development of the study of wind waves.  相似文献   

12.
The present paper develops the complete second-order wavemaker theory for the generation of multidirectional waves in a semi-infinite basin. The theory includes superharmonics and subharmonics and is valid for a rotational as well as a translatory serpent-type wave-board motion. The primary goal is to obtain the second-order motion of the wave paddles required to get a prescribed multidirectional irregular wave field correct to second order, i.e. to suppress spurious free-wave generation. The wavemaker theory is a 3D extension of the full second-order wavemaker theory for wave flumes by Schäffer (1996).  相似文献   

13.
Mobile offshore double-causeway pier system, a type of seashore unloading equipment, consists of two groups of multiple connected semi-submersible modules. This structure has wide application because most of the middle or mini type of vessels and ships can be moored to it. Based on the analysis of computational methods of multi-body motion response, a hydrodynamic model is set up and the three-dimensional potential theory in finite depth is adopted to calculate the three-dimensional motion response of this system. The double P-M spectrum is used to analyze the motion response in irregular waves. Different wave directions are specially taken into consideration, due to their various effects to the motion response. Furthermore, the calculated result is compared with that of the experiment, and it is proved that sway, heave, pitch and yaw motion are greatly constrained by mooring system. The comparison also indicates that the model can forecast the motion performance of the target, and that the calculated result can also be used as reference in connector and mooring system design.  相似文献   

14.
Second-order wavemaker theory for irregular waves   总被引:3,自引:0,他引:3  
Through the last decade the theory for second-order irregular wave generation was developed within the framework of Stokes wave theory. This pioneering work, however, is not fully consistent. Furthermore, due to the extensive algebra involved, the derived transfer functions appear in an unnecessarily complicated form. The present paper develops the full second-order wavemaker theory (including superharmonics as well as subharmonics) valid for rotational as well as translatory wave board motion. The primary goal is to obtain the second-order motion of the wave paddle required in order to get a spatially homogeneous wave field correct to second order, i.e. in order to suppress spurious free-wave generation. In addition to the transfer functions developed in the line of references on which the present work is based, some new terms evolve. These are related to the first-order evanescent modes and accordingly they are significant when the wave board motion makes a poor fit to the velocity profile of the desired progressive wave component. This is, for example, the case for the high-frequency part of a primary wave spectrum when using a piston-type wavemaker. The transfer functions are given in a relatively simple form by which the computational effort is reduced substantially. This enhances the practical computation of second-order wavemaker control signals for irregular waves, and no narrow band assumption is needed. The software is conveniently included in a PC-based wave generation system—the DHI Wave Synthesizer. The validity of the theory is demonstrated for a piston type wavemaker in a number of laboratory wave experiments for regular waves, wave groups and irregular waves.  相似文献   

15.
Based on the full water-wave equation, a second-order analytic solution for nonlinear interaction of short edge waves on a constant plane sloping bottom is presented in this paper. For special case of slope angle b=p/2, this solution can be reduced to the same order solution of deep water gravity surface waves traveling along parallel coastline. Interactions between two edge waves including progressive, standing and partially reflected standing waves were also discussed. The unified analytic expressions with transfer functions for kinematic-dynamic elements of edge waves were also discussed. The random model of the unified wave motion processes for linear and nonlinear irregular edge waves is formulated, and the corresponding theoretical autocorrelation and spectral density functions of the first and second orders are derived. The boundary conditions for the determining determination of the parameters of short edge wave are suggested, that may be seen as one special simple edge wave excitation mechanism and an extension to the sea wave refraction theory. Finally some computation results are demonstrated.  相似文献   

16.
Based on the full water-wave equation,a second-order analytic solution for nonlinear interaction of short edge waves on a plane sloping bottom is presented in this paper.For special case of slope angle β=π/2,this solution can reduced to the same order solution of deep water gravity surface waves traveling along parallel coastline.Interactions between two edge waves including progressive,standing and partially reflected standing waves are also discussed.The unified analytic expressions with transfer functions for kinematic-dynamic elements of edge waves are also given.The random model of the unified wave motion processes for linear and nonlinear irregular edge waves is formulated,and the corresponding theoretical autocorrelation and spectral density functions of the first and the second orders are derived.The boundary conditions for the determination of the parameters of short edge wave are suggested,that may be seen as one special simple edge wave excitation mechanism and an extension to the sea wave refraction theory.Finally some computation results are demonstrated.  相似文献   

17.
Compared with solar and wind energy, wave energy is a kind of renewable resource which is enormous and still under development. In order to utilize the wave energy, various types of wave energy converters (WECs) have been proposed and studied. And oscillating-body WEC is widely used for offshore deployment. For this type of WEC, the oscillating motion of the floater is converted into electricity by the power take off (PTO) system, which is usually mathematically simplified as a linear spring and a damper. The linear PTO system is characteristic of frequency-dependent response and the energy absorption is less powerful for off resonance conditions. Thus a nonlinear snap through PTO system consisting of two symmetrically oblique springs and a linear damper is applied. A nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two oblique springs to the original length of both springs. JONSWAP spectrum is utilized to generate the time series of irregular waves. Time domain method is used to establish the motion equation of the oscillating-body WEC in irregular waves. And state space model is applied to replace the convolution term in the time domain motion equation. Based on the established motion equation, the motion response of both the linear and nonlinear WEC is numerically calculated using 4th Runge–Kutta method, after which the captured power can be obtained. Then the influences of wave parameters such as peak frequency, significant wave height, damping coefficient of the PTO system and the nonlinear parameter γ on the power capture performance of the nonlinear WEC is discussed in detail. Results show that compared with linear PTO system, the nonlinear snap through PTO system can increase the power captured by the oscillating body WEC in irregular waves.  相似文献   

18.
Calculation of the kinematics of random waves above the mean water line presents great difficulties. The kinematic boundary condition fit (KBCF) method approximates the solution through the numerical calculation of a potential function which fits the kinematic boundary condition on a specified surface. Comparisons with a high order regular wave show that the method converges to the true solution when the surface is accurately specified. Tests of the method for irregular waves were made with measurements from a laser-Doppler current meter in the Delft wave tank. These tests showed good agreement between theory and measurement when the surface evolution was calculated correct to second order. Stretched linear theory was also compared to the measurements. The stretched velocities were reasonably good when the phases of the component wavelets were measured but somewhat low when the phases were selected from a uniform distribution.  相似文献   

19.
A fully nonlinear domain decomposed solver is proposed for efficient computations of wave loads on surface piercing structures in the time domain. A fully nonlinear potential flow solver was combined with a fully nonlinear Navier–Stokes/VOF solver via generalized coupling zones of arbitrary shape. Sensitivity tests of the extent of the inner Navier–Stokes/VOF domain were carried out. Numerical computations of wave loads on surface piercing circular cylinders at intermediate water depths are presented. Four different test cases of increasing complexity were considered; 1) weakly nonlinear regular waves on a sloping bed, 2) phase-focused irregular waves on a flat bed, 3) irregular waves on a sloping bed and 4) multidirectional irregular waves on a sloping bed. For all cases, the free surface elevation and the inline force were successfully compared against experimental measurements.  相似文献   

20.
Based on the linear potential flow theory and matching eigen-function expansion technique, an analytical model is developed to investigate the hydrodynamics of two-dimensional dual-pontoon floating breakwaters that also work as oscillating buoy wave energy converters (referred to as the integrated system hereafter). The pontoons are constrained to heave motion independently and the linear power take-off damping is used to calculate the absorbed power. The proposed model is verified by using the energy conservation principle. The effects of the geometrical parameters on the hydrodynamic properties of the integrated system, including the reflection and transmission coefficients and CWR (capture width ratio, which is defined as the ratio of absorbed wave power to the incident wave power in the device width). It is found that the natural frequency of the heave motion and the spacing of the two pontoons are the critical factors affecting the performance of the integrated system. The comparison between the results of the dual-pontoon breakwater and those of the single-pontoon breakwater shows that the effective frequency range (for condition of transmission coefficient KT < 0.5 and the total capture width ratio ηtotal > 20%) of the dual-pontoon system is broader than that of the single-pontoon system with the same total volume. For the two-pontoon system, the effective frequency range can be broadened by decreasing the draft of the front pontoon within certain range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号