首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The lateral propagation of faults and folds is known to be an important process during the development of mountain belts, but little is known about the manner in which along‐strike fault–fold growth is expressed in pre‐ and syntectonic (growth) strata. We use a coupled tectonic and stratigraphic model to investigate the along‐strike stratigraphic expression of fault‐related folds/uplifts that grow in both the transport and strike directions. We consider faults that propagate following a quadratic (nonself‐similar evolution) or linear (self‐similar evolution) scaling law, using different slip distributions per episode of fault propagation, under general background sedimentation. We find that the long‐strike geometry of pre‐ and syntectonic strata and the geometry of growth axial surfaces reflect the mode of fault propagation. The geometry of strata observed in the model is similar to that observed in natural contractional structures when: (1) the evolution of the fault is nonself‐similar, or (2) the fault grows as a result of thrust faulting events with similar displacements along strike that are terminated abruptly at the fault tips.  相似文献   

2.
The Plataforma Burgalesa is a partly exposed extensional forced fold system with an intermediate salt layer, which has developed along the southern portion of the Basque‐Cantabrian Basin from Malm to Early Cretaceous as part of the Bay of Biscay‐Pyrenean rift system. Relationships between syn‐ and pre‐rift strata of the supra‐salt cover sequence and distribution of intra‐cover second‐order faults are observed both along seismic sections and at the surface. These relationships indicate an along‐strike variability of the extensional structural style. After a short period of salt mobilization and forced folding, high slip rates in the central portion of the major basement faults have rapidly promoted brittle behaviour of the salt layer, preventing further salt mobilization and facilitating the propagation of the fault across the salt layer. In contrast, at the tip regions of basement faults, slower slip rates have facilitated ductile salt behaviour, ensuring its further evaporite evacuation, preventing fault propagation across the salt layer and, in essence, allowing for a long‐living forced folding process. Our results indicate the important effect of along‐strike variation in displacement and displacement rates in controlling evaporite behaviour in extensional basins. Amount of displacement and displacement rates are key factors controlling the propagation of basement faults across evaporite layers. In addition, growth strata patterns are recognized as a powerful tool for constraining the up‐dip propagation history of basement faults in extensional fault‐related fold systems with intermediate décollement levels.  相似文献   

3.
The Sagaing Fault zone is the largest active fault in SE Asia, whose current displacement rate of around 1.8 cm year?1 is well‐established from GPS data. Yet determining the timing of initiation and total displacement on the fault zone has proven controversial. The timing problem can potentially be resolved through a newly identified syn‐kinematic sedimentary section directly related to displacement on the Sagaing Fault in the northern Minwun Ranges. The northern part of the western strand of the Sagaing Fault has a releasing splay geometry that sets up a syn‐kinematic oblique‐extensional basin in its hangingwall, here called the North Minwun Basin. A series of thick ridges probably composed of alluvial fan and fluvial sandstones dipping between 20 and 70° to the north, and younging northwards comprise the basin fill over a distance of 40 km. Total stratigraphic thickness (not vertical thickness) is estimated at 25 km. The basin in terms of depositional geometries, large displacements, and large stratigraphic thickness and appearance on satellite images has parallels with the extensional Hornelen basin, Norway and the strike‐slip Ridge Basin, California. Minimum likely displacement on the fault strand is 40 km, and may possibly be in excess of 100 km. The remote and inaccessible basin has yet to be properly dated, likely ages range between Eocene and Miocene. When dated the basin will provide an important constraint on the timing of deformation. The potential for this basin to constrain the timing and displacement along the northern part of the Sagaing Fault has not been previously recognised.  相似文献   

4.
The thickness and distribution of early syn‐rift deposits record the evolution of structures accommodating the earliest phases of continental extension. However, our understanding of the detailed tectono‐sedimentary evolution of these deposits is poor, because in the subsurface, they are often deeply buried and below seismic resolution and sparsely sampled by borehole data. Furthermore, early syn‐rift deposits are typically poorly exposed in the field, being buried beneath thick, late syn‐rift and post‐rift deposits. To improve our understanding of the tectono‐sedimentary development of early syn‐rift strata during the initial stages of rifting, we examined quasi‐3D exposures in the Abura Graben, Suez Rift, Egypt. During the earliest stage of extension, forced folding above blind normal fault segments, rather than half‐graben formation adjacent to surface‐breaking faults, controlled rift physiography, accommodation development and the stratigraphic architecture of non‐marine, early syn‐rift deposits. Fluvial systems incised into underlying pre‐rift deposits and were structurally focused in the axis of the embryonic depocentre, which, at this time, was characterized by a fold‐bound syncline rather than a fault‐bound half graben. During this earliest phase of extension, sediment was sourced from the rift shoulder some 3 km to the NE of the depocentre, rather than from the crests of the flanking, intra‐basin extensional forced folds. Fault‐driven subsidence, perhaps augmented by a eustatic sea‐level rise, resulted in basin deepening and the deposition of a series of fluvial‐dominated mouth bars, which, like the preceding fluvial systems, were structurally pinned within the axis of the growing depocentre, which was still bound by extensional forced folds rather than faults. The extensional forced folds were eventually locally breached by surface‐breaking faults, resulting in the establishment of a half graben, basin deepening and the deposition of shallow marine sandstone and fan‐delta conglomerates. Because growth folding and faulting were coeval along‐strike, syn‐rift stratal units deposited at this time show a highly variable along‐strike stratigraphic architecture, locally thinning towards the growth fold but, only a few kilometres along‐strike, thickening towards the surface‐breaking fault. Despite displaying the classic early syn‐rift stratigraphic motif recording net upward‐deepening, extensional forced folding rather than surface faulting played a key role in controlling basin physiography, accommodation development, and syn‐rift stratal architecture and facies development during the early stages of extension. This structural and stratigraphic observations required to make this interpretation are relatively subtle and may go unrecognized in low‐resolution subsurface data sets.  相似文献   

5.
Along‐strike structural linkage and interaction between faults is common in various compressional settings worldwide. Understanding the kinematic history of fault interaction processes can provide important constraints on the geometry and evolution of the lateral growth of segmented faults in the fold‐and‐thrust belts, which are important to seismic hazard assessment and hydrocarbon trap development. In this study, we study lateral structural geometry (fault displacement and horizon shortening) of thrust fault linkages and interactions along the Qiongxi anticline in the western Sichuan foreland basin, China, using a high‐resolution 3D seismic reflection dataset. Seismic interpretation suggests that the Qiongxi anticline can be related to three west‐dipping, hard‐linked thrust fault segments that sole onto a regional shallow detachment. Results reveal that the lateral linkage of fault segments limited their development, affecting the along‐strike fault displacement distributions. A deficit between shortening and displacement is observed to increase in linkage zones where complex structural processes occur, such as fault surface bifurcation and secondary faulting, demonstrating the effect of fault linkage process on structural deformation within a thrust array. The distribution of the geometrical characteristics shows that thrust fault development in the area can be described by both the isolated fault model and the coherent fault model. Our measurements show that new fault surfaces bifurcate from the main thrust ramp, which influences both strain distribution in the relay zone and along‐strike fault slip distribution. This work fully describes the geometric and kinematic characteristics of lateral thrust fault linkage, and may provide insights into seismic interpretation strategies in other complex fault transfer zones.  相似文献   

6.
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations.  相似文献   

7.
8.
The Alhama de Murcia and Crevillente faults in the Betic Cordillera of southeast Spain form part of a network of prominent faults, bounding several of the late Tertiary and Quaternary intermontane basins. Current tectonic interpretations of these basins vary from late‐orogenic extensional structures to a pull‐apart origin associated with strike–slip movements along these prominent faults. A strike–slip origin of the basins, however, seems at variance both with recent structural studies of the underlying Betic basement and with the overall basin and fault geometry. We studied the structure and kinematics of the Alhama de Murcia and Crevillente faults as well as the internal structure of the late Miocene basin sediments, to elucidate possible relationships between the prominent faults and the adjacent basins. The structural data lead to the inevitable conclusion that the late Miocene basins developed as genuinely extensional basins, presumably associated with the thinning and exhumation of the underlying basement at that time. During the late Miocene, neither the Crevillente fault nor the Alhama de Murcia fault acted as strike–slip faults controlling basin development. Instead, parts of the Alhama de Murcia fault initiated as extensional normal faults, and reactivated as contraction faults during the latest Miocene–early Pliocene in response to continued African–European plate convergence. Both prominent faults presently act as reverse faults with a movement sense towards the southeast, which is clearly at variance with the commonly inferred dextral or sinistral strike–slip motions on these faults. We argue that the prominent faults form part of a larger scale zone of post‐Messinian shortening made up of SSE‐ and NNW‐directed reverse faults and NE to ENE‐trending folds including thrust‐related fault‐bend folds and fault‐propagation folds, transected and displaced by, respectively, WNW‐ and NNE‐trending, dextral and sinistral strike–slip (tear or transfer) faults.  相似文献   

9.
Seven tectonic subsidence curves, based on outcrop data, have been calculated in order to constrain the geodynamic evolution of the Permian–Mesozoic sedimentary succession (up to 10 km thick) of the Central Southern Alps basin (Italy). The analysis of the tectonic subsidence curves, covering a time span of about 200 Ma, allowed us to quantify the subsidence rates, to document the activity of syndepositional fault systems and calculate their slip rates. Different stages, in terms of duration and magnitude of subsidence‐uplift trends, have been identified in the evolution of the basin. The fault activity, reconstructed by comparing subsidence curves from adjacent sectors, resulted as highly variable both temporally and spatially. Strike‐slip tectonics was coeval to Permian sedimentation, as suggested by the strong differences in the subsidence rates in the sections. The evolution and subsidence rates suggest a continental shelf deposition from Early Triassic to Carnian, when subsidence came to a stop. A rapid resumption of subsidence is observed from the Norian, with a subsidence pulse in the Late Norian, followed by the regional uplift, in the Late Rhaetian. The following Early Jurassic subsidence is characterized by tectonic subsidence similar to that of the Norian. The Norian and Early Jurassic pulses were characterized by the highest slip rates along growth faults and are identified as two distinct tectonic events. The Norian–Rhaetian event is tentatively related to transtensional tectonics whereas the Early Jurassic event is related to crustal extension. The Early Jurassic subsidence records a shift in space an time of the beginning of the extensional stage, from Late Hettangian to the east to Late Pliensbachian–Toarcian to the west. From the Toarcian to the Aptian, the curves are compatible with regional thermal subsidence, later followed (Albian–Cenomanian) by uplift pulses in a retrobelt foreland basin (from Cenomanian onward).  相似文献   

10.
《Basin Research》2018,30(3):448-479
The onshore central Corinth rift contains a syn‐rift succession >3 km thick deposited in 5–15 km‐wide tilt blocks, all now inactive, uplifted and deeply incised. This part of the rift records upward deepening from fluviatile to lake‐margin conditions and finally to sub‐lacustrine turbidite channel and lobe complexes, and deep‐water lacustrine conditions (Lake Corinth) were established over most of the rift by 3.6 Ma. This succession represents the first of two phases of rift development – Rift 1 from 5.0–3.6 to 2.2–1.8 Ma and Rift 2 from 2.2–1.8 Ma to present. Rift 1 developed as a 30 km‐wide zone of distributed normal faulting. The lake was fed by four major N‐ to NE‐flowing antecedent drainages along the southern rift flank. These sourced an axial fluvial system, Gilbert fan deltas and deep lacustrine turbidite channel and lobe complexes. The onset of Rift 2 and abandonment of Rift 1 involved a 30 km northward shift in the locus of rifting. In the west, giant Gilbert deltas built into a deepening lake depocentre in the hanging wall of the newly developing southern border fault system. Footwall and regional uplift progressively destroyed Lake Corinth in the central and eastern parts of the rift, producing a staircase of deltaic and, following drainage reversal, shallow marine terraces descending from >1000 m to present‐day sea level. The growth, linkage and death of normal faults during the two phases of rifting are interpreted to reflect self‐organization and strain localization along co‐linear border faults. In the west, interaction with the Patras rift occurred along the major Patras dextral strike‐slip fault. This led to enhanced migration of fault activity, uplift and incision of some early Rift 2 fan deltas, and opening of the Rion Straits at ca. 400–600 ka. The landscape and stratigraphic evolution of the rift was strongly influenced by regional palaeotopographic variations and local antecedent drainage, both inherited from the Hellenide fold and thrust belt.  相似文献   

11.
A central question in structural geology is whether, and by what mechanism, active faults (and the folds often associated with them) grow in length as they accumulate displacement. An obstacle in our understanding of these processes is the lack of examples in which the lateral growth of active structures can be demonstrated definitively, as geomorphic indicators of lateral propagation are often difficult, or even impossible to distinguish from the effects of varying lithology or non‐uniform displacement and slip histories. In this paper we examine, using the Zagros mountains of southern Iran as our example, the extent to which qualitative analysis of satellite imagery and digital topography can yield insight into the growth, lateral propagation, and interaction of individual fold segments in regions of active continental shortening. The Zagros fold‐and‐thrust belt contains spectacular whaleback anticlines that are well exposed in resistant Tertiary and Mesozoic limestone, are often >100 km in length, and which contain a large proportion of the global hydrocarbon reserves. In one example, Kuh‐e Handun, where an anticline is mantled by soft Miocene sediments, direct evidence of lateral fold propagation is recorded in remnants of consequent drainage patterns on the fold flanks that do not correspond to the present‐day topography. We suggest that in most other cases, the soft Miocene and Pliocene sediments that originally mantled the folds, and which would have recorded early stages in the growth histories, have been completely stripped away, thus removing any direct geomorphic evidence of lateral propagation. However, many of the long fold chains of the Zagros do appear to be formed from numerous segments that have coalesced. If our interpretations are correct, the merger of individual fold segments that have grown in length is a major control on the development of through‐going drainage and sedimentation patterns in the Zagros, and may be an important process in other regions of crustal shortening as well. Abundant earthquakes in the Zagros show that large seismogenic thrust faults must be present at depth, but these faults rarely reach the Earth's surface, and their relationship to the surface folding is not well constrained. The individual fold segments that we identify are typically 20–40 km in length, which correlates well with the maximum length of the seismogenic basement faults suggested from the largest observed thrusting earthquakes. This correlation between the lengths of individual fold segments and the lengths of seismogenic faults at depth suggest that it is possible, at least in some cases, that there may be a direct relationship between folding and faulting in the Zagros, with individual fold segments underlain by discrete thrusts.  相似文献   

12.
The thrust sheets of the Northern Calcareous Alps were emplaced during Late Cretaceous thrust‐dominated transpression expressed by thrust sheets segmented by closely spaced tear faults. Thrust sheet‐top sediments were deposited during thrusting and associated fold growth and were controlled by active folding and tearing. We observe two types of angular unconformities: (1) Angular unconformities above folds between tear faults conform with the model of progressive unconformities. Across these unconformities dip decreases upsection. (2) Here, we define progressive unconformities that are related to tear faults and are controlled by both folding and tearing. Across these unconformities both strike and dip change. In growth strata overlying folds dissected by high‐angle faults, such unconformities are expected to be common. We used analogue modelling to define the geometry of the tear faults and related unconformities. Within the syn‐tectonic sediments, a steep, upward flattening thrust within a broader, roughly tulip‐shaped drag zone develops. The thrust roots in the tear fault in pre‐tectonic deposits and is curved upward toward the downthrown block. Vertical offset on the thrust is related to differential vertical uplift caused by, for example, growth of folds with different wavelength and amplitude on either side of the tear fault. Formation of progressive unconformities is governed by the relationship between the rates of deposition and vertical growth of a structure. Fault‐related progressive unconformities are additionally controlled by the growth of the vertical step across the tear fault. When the rates of vertical growth of two neighbouring folds separated by a tear fault are similar, the rate of growth across the tear fault is small; if the first differ, the latter is high. Episodic tear fault activity may create several angular unconformities attached to a tear fault or allow the generation of angular unconformities near tear faults in sedimentary systems that have a rate of deposition too high to generate classical progressive unconformities between the tear faults.  相似文献   

13.
《Basin Research》2018,30(Z1):65-88
Mass wasting is an important process in the degradation of deep‐water fold‐and‐thrust belts. However, the relationship between mass‐transport complex (MTC) emplacement and the timing and spatial progression of contractional deformation of the seabed have not been extensively studied. This study uses high‐quality, 3D seismic reflection data from the southern Magdalena Fan, offshore Colombia to investigate how the growth of a deep‐water fold‐and‐thrust belt (the southern Sinú fold belt) is recorded in the source, distribution and size of MTCs. More than nine distinct, but coalesced MTCs overlie a major composite basal erosion surface. This surface formed by multiple syn‐ and post‐tectonic mass‐wasting events and is thus highly diachronous, thereby recording a protracted period of tectonism, seascape degradation and associated sedimentation. The size and source location of these MTCs changed through time: the oldest ‘detached’ MTCs are relatively small (over 9–100 km2 in area) and sourced from the flanks of growing anticlines, whereas the younger ‘shelf‐attached’ MTCs are considerably larger (more than 200–300 km2), are sourced from the shelf, and post‐date the main phase of active folding and thrusting. Changes in the source, distribution and size of MTCs are tied to the sequential nucleation, amplification and along‐strike propagation of individual structures, showing that MTCs can be used to constrain the timing and style of contractional deformation, and seascape evolution in time and space.  相似文献   

14.
Magnetotelluric studies over the Shillong plateau and lower Brahmaputra sediments have delineated the Dauki fault as a NE–SW striking thrust zone with a dip angle of about 30°, along which the low resistivity layer of Bengal sediments and the underlying oceanic crust subduct to the northwest. At present, about 50 km length of these sequences has subducted beneath the Shillong plateau and is traced up to depth of about 40 km. Another thrust zone, sub parallel to the Dauki thrust is observed in the lower Brahmaputra valley, corresponding to the Brahmaputra fault. This is interpreted to be an intracratonic thrust within the Indian plate. These results suggest that a large fraction of the seismicity over the Shillong plateau is associated with the NE–SW striking Dauki thrust, contrary to the earlier belief that this fault zone is relatively aseismic. The present studies also suggest that the Shillong plateau and the adjoining sedimentary layers act as a supracrustal block, not directly participating in the subduction process. However in response to the compressive tectonic forces generated by the Himalayan and Indo-Burman subduction processes the Shillong plateau, together with the Brahmaputra sediments overlying the Indian crust drift eastwards relative to the Bengal sediments along the surface expression of the Dauki fault leading to a dextral strike slip movement. We thus propose that the NE Indian crust responds to the compressive forces differently at different depths, governed by the rheological considerations. At deeper levels the crustal readjustments take place through the subduction along the Dauki and Brahmaputra thrusts where as, at the shallow levels the relative deformability of the supracrustal blocks have a strong influence on the tectonics, leading to the strike slip mechanism along the surface expression of the Dauki fault.  相似文献   

15.
Transtensional basins are sparsely described in the literature compared with other basin types. The oblique‐divergent plate boundary in the southern Gulf of California has many transtensional basins: we have studied those on San Jose island and two other transtensional basins in the region. One major type of transtensional basin common in the southern Gulf of California region is a fault‐termination basin formed where normal faults splay off of strike‐slip faults. These basins suggest a model for transtensional fault‐termination basins that includes traits that show a hybrid nature between classic rift and strike‐slip (pull‐apart) basins. The traits include combinations of oblique, strike‐slip and normal faults with common steps and bends, buttress unconformities between the fault steps and beyond the ends of faults, a common facies pattern of terrestrial strata changing upward and away from the faults into marine strata, small fault blocks within the basin that result in complex lateral facies relations, common Gilbert deltas, dramatic termination of the margin of the basin by means of fault reorganization and boundary faults dying and an overall short basin history (few million years). Similar transtensional fault‐termination basins are present in Death Valley and other parts of the Eastern California shear zone of the western United States, northern Aegean Sea and along ancient strike‐slip faults.  相似文献   

16.
The development of high‐resolution 3D seismic cubes has permitted recognition of variable subvolcanic features mostly located in passive continental margins. Our study area is situated in a different tectonic setting, in the extensional Pannonian Basin system (central Europe) where the lithospheric extension was associated with a wide variety of magmatic suites during the Miocene. Our primary objective is to map the buried magmatic bodies, to better understand the temporal and spatial variation in the style of magmatism and emplacement mechanism within the first order Mid‐Hungarian Fault Zone (MHFZ) along which the substantial Miocene displacement took place. The combination of seismic, borehole and log data interpretation enabled us to delineate various previously unknown subvolcanic‐volcanic features. In addition, a new approach of neural network analysis on log data was applied to detect and quantitatively characterise hydrothermal mounds that are hard to interpret solely from seismic data. The volcanic activity started in the Middle Miocene and induced the development of extrusive volcanic mounds south of the NE‐SW trending, continuous strike‐slip fault zone (Hajdú Fault Zone). In the earliest Late Miocene (11.6–9.78 Ma), the style of magmatic activity changed resulting in emplacement of intrusions and development of hydrothermal mounds. Sill emplacement occurred from south‐east to north‐west based on primary flow‐emplacement structures. The time of sill emplacement and the development of hydrothermal mounds can be bracketed by onlapped forced folds and mounds. This time coincided with the acceleration of sedimentation producing poorly consolidated, water‐saturated sediments preventing magma from flowing to the paleosurface. The change in extensional direction resulted in change in fault pattern, thus the formerly continuous basin‐bounding strike‐slip fault became segmented which could facilitate the magma flow toward the basin centre.  相似文献   

17.
《Basin Research》2018,30(4):688-707
Investigations of syn‐sedimentary growth faults in the Last Chance delta (Ferron Sandstone, Utah, USA) show that fault‐bounded half‐grabens arrested high amounts of sand in the mouth bar and/or distributary channel areas. Fault‐controlled morphology causes changes in routing of the delta top to delta front drainage towards the long axis of half‐grabens. Faulting was spatially and temporally non‐systematic, and polyphase, with 3D cusp/listric fault geometries instigated by linkage of variously oriented segments. Hanging wall rollover folds consisting of wedge‐shaped syn‐kinematic sand attest to rapid <1‐m slip increments on faults followed by mild erosion along crests of fault blocks and sedimentary infill of adjacent accommodation. Triangle‐zones in prodelta to delta front muds are located underneath steeper faults and interconnected rotated fault‐flats. Their geometry is that of antiformal stack duplexes, in an arrangement of low‐angle‐to‐bedding normal faults at the base, replaced by folded thrusts upwards. These faults show a brittle, frictional flow deformation mechanism ascribed to early compaction of mud. For syn‐kinematic sand, there is a change from general granular/hydroplastic flow in shear zones to later brittle failure and cataclasis, a transition instigated by precipitation of calcite cement. Extensional faulting in the Last Chance delta was likely controlled by gravity driven collapse towards the delta slope and prodelta, as is commonly observed in collapsing deltas. The trigger and driving mechanism is envisioned as localized loads from sand deposited within distributary channels/mouth bars and fault‐controlled basins along the delta top. A regional tilt and especially displacement of compacted mud below sand bodies towards less compacted muds also contributed to the faulting.  相似文献   

18.
Extensional fault‐propagation folds are now recognised as being an important part of basin structure and development. They have a very distinctive expression, often presenting an upward‐widening monocline, which is subsequently breached by an underlying, propagating fault. Growth strata, if present, are thought to provide a crucial insight into the manner in which such structures grow in space and time. However, interpreting their stratigraphic signal is neither straightforward nor unique. Both analogue and numerical models can provide some insight into fold growth. In particular, the trishear kinematic model has been widely adopted to explain many aspects of the evolution and geometry of such fault‐propagation folds. However, in some cases the materials/rheologies used to represent the cover do not reproduce the key geometric/stratigraphic features of such folds seen in nature. This appears to arise from such studies not addressing adequately the very heterogenous mechanical stratigraphy seen in many sedimentary covers. In particular, flexural slip between beds/layers is often not explicitly modelled but, paradoxically, it appears to be an important deformation mechanism operative in such settings. Here, I present a 2D discrete element model of extensional fault‐propagation folding which explicitly includes flexural slip between predefined sedimentary units or layers in the cover. The model also includes growth strata and shows how they may reflect the various evolutionary stages of fold and fault growth. When flexural slip is included in the modelling scheme, the resultant breached monoclines and their growth strata are strikingly similar to some of those seen in nature. Results are also compared with those obtained using simple, homogeneous, frictional‐cohesive and elastic cover materials. Both un‐lithified and lithified growth strata are considered and clearly show that, rather than just being passive recorders of structural evolution, growth strata can themselves have an important effect on fault‐related fold growth. Implications for the evolution of and strain within, the resultant growth structures are discussed. A final focus of this study is the relationship that trishear might have with the upward‐widening zone of flexural slip activation away from a fault tip singularity.  相似文献   

19.
ABSTRACT This paper investigates syn‐rift stratigraphic architecture and facies relationships along a 7 km long strike section towards the tip of a major, basin‐bounding normal fault segment (Thal Fault) in the Suez Rift, Egypt. In this location, the fault is composed of two precursor fault strands, Gushea and Abu Ideimat, linked by a jog or transfer fault. We document a Miocene syn‐rift succession, deposited more than c. 5.5 Myr after rift initiation, that is composed of a range of carbonate‐clastic facies associated with coarse‐grained deltaic, shoreface and offshore depositional systems. Key regionally correlatable stratal surfaces within this succession define time equivalent stratal units that exhibit variability in thickness and architecture, related to the interplay of both regional and local controls, in particular, the evolution of two, small‐scale (<6 km long) precursor fault strands (Gushea and Abu Ideimat). Integration of structural and stratigraphic data indicates that the boundary (relay ramp) between these two fault strands was a relative high during much of the rift event, with hard‐linkage and considerable displacement accumulation not occurring until at least c. 7.5 Myr after rift initiation. This is because: (i) the preserved stratigraphy is thinner in the hanging wall of the strand boundary; (ii) a eustatic sea‐level fall with an amplitude of 100 m generated more than 25 m of incision at the strand boundary, a region that has a final fault displacement of c. 600 m; and (iii) the fault strand boundary persisted as a footwall low and transport pathway for coarse‐grained deltas entering the basin. This study indicates that variability in stratal thickness and stratigraphic architecture towards the tip of the Thal Fault was related to the linkage history of two small‐scale (c. 6 km long) precursor fault segments. We suggest that similar, small‐scale stratal variability may occur repeatedly along the entire length of major basin‐bounding fault segments due to the process of fault growth by the linkage of smaller scale precursor strands.  相似文献   

20.
The well‐constrained seismic stratigraphy of the offshore Canterbury basin provides the opportunity to investigate long‐term changes in sediment supply related to the formation of a transpressive plate boundary (Alpine Fault). Reconstructions of the relative motion of the Australian and Pacific plates reveal divergence in the central Southern Alps prior to ~20.1 Ma (chron 6o), followed by increasing average rates of convergence, with a marked increase after ~6 Ma (late Miocene). A strike–slip component existed prior to 33.5 Ma (chron 13o) and perhaps as early as Eocene (45 Ma). However, rapid strike–slip motion (>30 mm yr?1) began at ~20.1 Ma (chron 6o). Since ~20.1 Ma there has been no significant change in the strike–slip component of relative plate motion. Sedimentation rates are calculated from individual sequence volumes that are then summed to represent sequence groups covering the same time periods as the tectonic reconstructions. Rates are relatively high (>22 mm yr?1), from 15 to ~11.5 Ma (sequence group 1). Rates decrease to a minimum (<15 mm yr?1) during the ~11.5–6 Ma interval (sequence group 2), followed by increased rates during the periods of ~6–2.6 Ma (21 mm yr?1; group 3) and 2.6–0 Ma (~25 mm yr?1; group 4). Good agreement between sedimentation and tectonic convergence rates in sequence groups 2–4 indicates that tectonism has been the dominant control on sediment supply to the Canterbury basin since ~11.5 Ma. In particular, high sedimentation rates of 21 and ~25 mm yr?1 in groups 3 and 4, respectively, may reflect increased plate convergence and uplift at the Southern Alps at ~6 Ma. The early‐middle Miocene (~15–11.5 Ma) high sedimentation rate (22 mm yr?1) correlates with low convergence rates (~2 mm yr?1) and is mainly a response to global climatic and eustatic forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号