首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
自适应网格模式在暴雨数值模拟中的应用   总被引:2,自引:4,他引:2  
基于变分原理,自适应网格技术能根据数值模式的特点,在模式解梯度大的地区自动加密网格,提高模式的分辨率。将其应用于MM4模式中,采用多重网格法以加速自适应网格的生成。对1996年8月4日至5日发生在华北的特大台风暴雨过程,用自适应网格模式和均匀网格模式进行了数值模拟和动力诊断分析,以研究自适应网格模式在天气预报和模拟应用中的特点。试验表明,采用自适应网格后计算稳定,对所关心的天气系统及其降水的模拟精度均高于均匀网格模式,对形势场、风场的模拟精度也有明显改善。  相似文献   

2.
在中尺度模式的基础上引进了自适应网格设计的方法,它可以任意加密局地网格,从而达到以较小的计算量获得较高的计算精度的目的。自适应网格技术基于变分原理,能根据数值模式的特点,在物理量梯度大的地方,自动加密网格,提高模式的分辨率。文章将自适应网格技术应用于MM4中,用来模拟2002年3月2~4日华北地区的一场中一大雪过程。结果表踢,采用自适应网格技术后,结果稳定,对所关心的天气系统及其降水的模拟精度与采用均匀网格相比得到踢显改善,温度场和风场预报也有不同程度的提高。  相似文献   

3.
卢绪兰  彭新东 《气象学报》2021,79(1):119-131
大气边界层湍流运动是地球大气运动最重要的能量输送过程之一。当数值模式分辨率接近活跃含能湍涡长度尺度时,湍流运动被部分解析,被称为“灰色区域”,传统的边界层方案不适合此时模式湍流问题的描述。为了提高模式边界层方案在包括“灰色区域”的不同网格尺度上的描述能力,适应不同分辨率模式的需要,在雷诺平均湍流理论基础上,修正Mellor-Yamada-Nakanishi-Niino (MYNN)方案湍流长度尺度参数和非局地湍流的参数表达,改进湿度和温度在“灰色区域”的湍流输送参数化及对网格尺度的自适应能力。利用改进的MYNN尺度自适应方案,分别采用3 km和1 km、1.5 km和0.5 km分辨率单向嵌套网格WRF中尺度模式,对2014年2月26日的一次黄海海雾过程进行模拟试验,检验不同分辨率下改进后的MYNN大气边界层参数化方案的合理性和对海雾的模拟效果。尺度自适应MYNN大气边界层参数化方案在千米级网格尺度上获得稳定、合理的湍流垂直输送计算结果。参照雾区卫星云图,不同分辨率模式低层云水混合比模拟结果具有稳定表现,模拟的雾区分布和温度、湿度等物理量结构都较好地再现了再分析“观测事实”,初步表明该参数化方案有较高的网格尺度自适应能力。   相似文献   

4.
自适应网格与均匀网格在数值模拟中的对比研究   总被引:1,自引:0,他引:1  
采用自适应网格和均匀网格两种模式,对1996年8月3—4日发生在山西、河北、河南三省交界地区的暴雨个例进行模拟和对比研究。结果表明,自适应网格模式对所关心的天气系统及其降水的模拟精度高于均匀网格,特别是对降水、风场、急流、涡度场的模拟精度改善显著。这说明自适应网格模拟的中尺度系统特征更清晰。  相似文献   

5.
自适应网格技术在数值模式中的应用研究 II.二维问题   总被引:3,自引:0,他引:3  
用一个具有解析解的二维动力锋生成过程算例,对比自适应网格方案和固定网格方案的优劣,结果表明:同等误差要求下,固定网格方案的网格点数为自适应网格方案的3倍。从时间演化上看,自适应网格对温带气旋的预报,在同等误差要求下,可比固定网格的预报延长10小时以上。文章对加权系数选取及对解的影响进行了分析,从几个切面的计算结果展示了自适应网格对网格的优良安排并能抓住锋面特征结构。文章分析了光滑性、正交性对结果的影响。结果表明:网格的光滑性影响有一个优化值;在网格适当安排情况下,要适度考虑正交性。  相似文献   

6.
基于动态自适应网格的开源软件Gerris受到越来越多海洋和水文研究者的关注.概述了Gerris开发背景、研究现状和特点,详细阐述了Gerris数值方案,包括动态自适应网格、动态负载平衡技术原理、广义正交曲线坐标系、内嵌复杂固体边界和地形数据的处理方法,并探讨了Gerris在海洋数值模拟中的初步应用.结果表明,Gerris动态自适应网格在多尺度问题模拟中的优势独特,在海洋数值模拟应用中可通过自适应网格提高地理特征的精度,通过GTS(或KDT)格式的数据来处理地形和网格,达到同时兼顾精确性和易用性的目的,使得Gerris与其他海洋模式进行有机结合成为重要发展方向.  相似文献   

7.
乔崛  彭新东 《气象》2024,50(4):449-460
为提高大气数值模式的模拟能力,改进大气边界层水汽、热量湍流输送计算和大雾天气的模拟效果,选用WRF三维非静力模式,采用具有局地和非局地垂直湍流尺度自适应计算能力的MYNN_SA参数化方案,对2017年12月28—29日我国华北—江淮地区的大范围浓雾过程进行了数值模拟研究,探讨从中尺度到灰区尺度分辨率范围,模式的尺度自适应大气边界层湍流参数化方案对稳定大气边界层发展、湍流输送和大雾天气模拟的影响。利用中国地面气象站观测资料和ERA5再分析数据,在接近灰区尺度的网格分辨率上,利用尺度自适应大气边界层湍流MYNN_SA参数化方案较之中尺度参数化MYNN方案,可明显改善次网格湍流输送计算,以及陆地浓雾的强度、空间分布和时间演变特征,可更精确地模拟云水混合比、逆温层和雾区的垂直结构。  相似文献   

8.
将多重网格法应用于MM5中来加速自适应网格的生成,并用这种方法来模拟2002年6月17-18日发生在江南和华南的暴雨过程。试验表明:在收敛精度要求高的情况下自适应模式模拟结果的精度高于均匀网格模式,且多重网格法有助于提高运算效率。  相似文献   

9.
中尺度数值模式的自适应网格设计   总被引:8,自引:4,他引:4  
引进了自适应网格设计的方法。自适应网要生成行技术基础变分原理,所生成的网格具有光滑性、一定程度的正交性和机调节网格疏密程度的优点,这种新技术可任意加密局地网格,从而达到以较小的计算量获得较高的计算精度的目的。将自适应网格技术应用于MM4中,并用来模拟192年6月14日这次大范围暴雨过程。结果表明,采用自适应网格后计算稳定,24h降水预报得到明显改善。  相似文献   

10.
本文在正压原始方程的基础上发展了一套适用于自适应网格坐标的自适应网格模式。该模式保持了笛卡尔坐标系下原有的整体积分性质。由于自适应网格与计算区域边界相重合,因而该模式可用于具有复杂形状的区域边界的计算问题。本文将其用于南海月平均流的数值模拟,取得了良好的效果。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号