首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The variation characteristics of precipitation during the winter (between October and the following March, to be referred to as just “the winter” hereafter) in Guangdong province during the past 50 years (from 1957 to 2006) and the relationship with Pacific SST are studied using the methods of Empirical Orthogonal Function (EOF) analysis, wavelet analysis, and correlation analysis. The results show that The Guangdong precipitation during the winter exhibits quasi-periodic significant oscillations of 40 years and 2 years; rainfall is less from the end of the 1950s to the start of the 1970s and from the end of the 1990s to the present than from the mid 1970s to the mid 1990s. The frequency of sustained drought is more than sustained flooding during the winter. The Guangdong precipitation during this time period is in significantly positive correlation to the equatorial central and eastern Pacific SST, but in a significantly negative correlation with the western and northern Pacific SST east of the Philippine Sea. 61.5% of the sustained drought occurred in the phase of negative anomalies of the Ni?o3.4 index and 38.5% in the phase of positive ones. A composite analysis of atmospheric circulation is performed for the positive and negative phases of the Ni?o3.4 region associated with the sustained drought. The results showed that a weak polar vortex, a strong trough in Europe and a ridge near Balkhash Lake, active cold air and consistent northerly wind anomalies controlling Guangdong at low levels, an inactive westerly low disturbance in the low-mid latitude of the Asian continent, and a weak southern branch westerly trough, are all mutual causes for the sustained drought.  相似文献   

2.
The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH.  相似文献   

3.
According to me lime cross-section or SSI in me equatorial eastern racing and me historical data on typhoon actions over the western Pacific (including the South China Sea), a composite analysis of the actions of typhoon over the western Pacific in El Nino year (SST in the equatorial eastern Pacific are continuously higher than normal) and in the inverse El Nino year (there are continuative negative anomalies of SST in the equatorial eastern Pacific) is carried out. The results show that the actions of typhoon are in close relation with El Nino: The annual average number of typhoons over the western Pacific and South China Sea is less than normal in El Nino year and more in the inverse El Nino year; The annual average number of the landing typhoon on the continent of China bears the same relationship with El Nino; The anomalies of typhoon actions mainly occur during July-November and their starting are behind the anomaly of SST in the equatorial eastern Pacific.Based on the generation and development co  相似文献   

4.
South China(SC) experienced persistent heavy rain in June 2010.The climatic anomalies and related mechanism are analyzed in this study.Results show that the large-scale circulation pattern favorable for precipitation was maintained.In the upper level,the South Asian High and westerly jet stream provided a divergent circulation over SC.In the middle and low levels,an anomalous strong subtropical high(STH) extended to the South China Sea.The southwesterly monsoon flow along the northwest flank of the STH transported abundant water vapor from the western North Pacific,the Bay of Bengal,and the South China Sea to SC.The precipitation can be classified into two types:the West Siberia low(WSL)-induced low-level cyclone mode,and the STH-induced low-level jet mode.STH and WSL indices are defined to estimate the influence of these two systems,respectively.Analysis shows that both are critical for precipitation,but their respective contributions differ from year to year.In 2010,both were important factors for the heavy rainfall in June.  相似文献   

5.
This paper attempts to reveal a long-distance-relayed water vapor transport(LRWVT) east of Tibetan Plateau and its impacts. The results show that from August to October, east of Tibetan Plateau, there exists a unique LRWVT,and the water vapor from the South China Sea and the western Pacific can affect the Sichuan Basin, Northwest China and other Chinese regions far from the tropical sea through this way. From August to October, the precipitation of the region east of the Plateau is closely linked both in the intra-annual and inter-annual variations, and the LRWVT from the South China Sea and the western Pacific is an important connection mechanism. The large-scale circulation background of the LRWVT impacting the precipitation of the region east of the Plateau is as follows: At high levels,the South Asian High is generally stronger than normal and significantly enhances with its northward advance and eastward extension over the region east of the Plateau. At mid-level, a broad low pressure trough is over Lake Balkhash and its surroundings, and the Western Pacific Subtropical High(WPSH) is northward and westward located, and the western part of Sichuan Basin and the eastern part of Northwest China are located in the west and northwest edge of WPSH.  相似文献   

6.
Observational and reanalysis data are used to investigate the different relationships between boreal spring sea surface temperature (SST) in the Indian and Pacific oceans and summer precipitation in China. Partial correlation analysis reveals that the effects of spring Indian Ocean SST (IO SST) and Pacific SST (PSST) anomalies on summer precipitation in China are qualitatively opposite. When IO SST anomalies are considered independently of PSST anomalies, precipitation decreases south of the Yangtze River, in most areas of Inner Mongolia, and in some parts of Liaoning Province, and increases in the Yangtze River valley, parts of southwestern and northern China, northeastern Inner Mongolia, and Heilongjiang Province. This results in a negative-positive-negative-positive pattern of precipitation anomalies in China from south to north. When PSST anomalies (particularly those in the Nin o3.4 region) are considered independently of IO SST anomalies, the pattern of precipitation anomalies in China is positive-negative-positive-negative from south to north. The genesis of summer precipitation anomalies in China is also examined when El Nin o-Southern Oscillation (ENSO) signals are removed from the ocean and atmosphere. An anticyclonic low-level wind anomaly forms in the South China Sea-Northwest Pacific area when the IO SST anomaly (SSTA) is warm and the Northwest Pacific SSTA is cold. This anticyclonic anomaly substantially influences summer precipitation in China. Anomalous warming of tropical IO SST induces positive geopotential height anomalies in the subtropics and an east-west dipole pattern in midlatitudes over Asia. These anomalies also affect summer precipitation in China.  相似文献   

7.
Guangdong suffered from the most serious precipitation of its corresponding time during the dragon-boat race of 2008 since 1951.The relationship between the strong dragon-boat precipitation in 2008 and atmospheric low-frequency oscillation was analyzed with the methods of wavelet analysis,correlation and Lanczos filter.Results showed that the daily rainfall exhibits a significant 7 to 12-day quasi-periodic oscillation(namely quasi-10-day oscillation) during the precipitation,the daily 500 hPa height over Guangdong exhibits a significant 8 to 13-day quasi-periodic oscillation,and the daily 850 hPa zonal wind averaged over the north of the South China Sea presents a significant quasi-12-day periodic oscillation.The Guangdong rainfall during the annually first rainy season is most closely correlated with monsoon over the north of South China Sea,and less closely with an upper-level trough at 500 hPa affecting Guangdong.Strong monsoon surges induced two heavy rainfall processes in 2008.The monsoon surges joined with a westward-propagating quasi-10-day oscillation that originated from the central Pacific and was enhanced in a strong convective region east of the Philippines and a northward-propagating monsoon that originated from the southern South China Sea was enhanced.With composite analysis of typical phases,the common evolution characteristics of atmospheric circulation of the two heavy rainfall processes were analyzed for different phases.These features can be used as reference for medium prediction of heavy rainfall processes in Guangdong.  相似文献   

8.
This study investigated the connection between the Australian summer monsoon(ASM) and summer precipitation over central China. It was found that,following a weaker-than-normal ASM, the East Asian summer monsoon and western North Pacific subtropical high tend to be stronger, yielding anomalous northward moisture to be transported from the western Pacific to central China. Besides, anomalous upwelling motion emerges over 30–37.5°N, along 110°E. Consequently,significant positive summer precipitation anomalies are located over central China. Further analysis indicated that the boreal winter sea surface temperature(SST) in the Indian Ocean and South China Sea shows positive anomalies in association with a weaker-than-normal ASM. The Indian Ocean warming in boreal winter could persist into the following summer because of its own long memory, emanating a baroclinic Kelvin wave into the Pacific that triggers suppressed convection and an anomalous anticyclone. Besides, the abnormal SST signal in the South China Sea develops eastward with time because of local air-sea interaction, causing summer SST warming in the western Pacific. The SST warming can further affect East Asian atmospheric circulation and precipitation through its impact on convection.  相似文献   

9.
The paper presents a review of the success and failure of the practical results from summer drought and flood forecasts and seasonal precipitation forecasts in the period from 1976 to 1985. An analysis is made on the anomaly of the general circulation wihch gives rise to summer precipitation and drought-flood occurrences in the country. It is proposed that the subtropical high over the West Pacific, the South Asia high and middle-latitude westerlies are the major synoptical regimes producing summer weather in China. The analysis focuses on the features of low-frequency oscillation and abnormality of the West Pacific subtropical high in the monthly 500 hPa mean charts, and on their interactions with the sea temperature of the North Pacific and the Equatorial Pacific. The result shows that there exist quasi-cycles of 3-4 years, 11 years and 19 years or so in the subtropical high with the feature of strong persistence and seasonal changes. There is a rather good correlation between the behaviour of the sub  相似文献   

10.
Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of the anomalous longitudinal position of the subtropical high in the western Pacific (SHWP) in the pre-rainy season in South China and associated circulation and precipitation are studied. Furthermore, the relationship between SHWP and SST and the eastern Asian winter monsoon is also investigated. Associated with the anomalous longitudinal position of SHWP in the pre-rainy season in South China, the flow patterns in both the middle and lower latitudes are different. The circulation anomalies greatly influence the precipitation in the pre-rainy season in South China. When the SHWP is in a west position (WP), the South China quasi-stationary front is stronger with more abundant precipitation there. However, when the SHWP is in an east position (EP), a weaker front appears with a shortage of precipitation there. There exists a good relationship between the longitudinal position of SHWP and SST in the tropical region. A negative correlation can be found both in the central and eastern tropical Pacific and the Indian Ocean.This means that the higher (lower) SST there corresponds to a west (east) position of SHWP. This close relationship can be found even in the preceding autumn and winter. A positive correlation appears in the western and northern Pacific and large correlation coefficient values also occur in the preceding autumn and winter. A stronger eastern Asian winter monsoon will give rise to cooler SSTs in the Kuroshio and the South China Sea regions and it corresponds to negative SST anomaly (SSTA) in the central and eastern Pacific and positive SSTA in the western Pacific in winter and the following spring. The whole tropical SSTA pattern, that is, positive (negative) SSTA in the central and eastern Pacific and negative (positive) SSTA in the western Pacific, is favorable to the WP (EP) of SHWP.  相似文献   

11.
Based on an analysis of the relationship between the tropical cyclone genesis frequency and large-scale circulation anomaly in NCEP reanalysis, large-scale atmosphere circulation information forecast by the JAMSTEC SINTEX-F coupled model is used to build a statistical model to predict the cyclogenesis frequency over the South China Sea and the western North Pacific. The SINTEX-F coupled model has relatively good prediction skill for some circulation features associated with the cyclogenesis frequency including sea level pressure, wind vertical shear, Intertropical Convergence Zone and cross-equatorial air flows. Predictors derived from these large-scale circulations have good relationships with the cyclogenesis frequency over the South China Sea and the western North Pacific. A multivariate linear regression (MLR) model is further designed using these predictors. This model shows good prediction skill with the anomaly correlation coefficient reaching, based on the cross validation, 0.71 between the observed and predicted cyclogenesis frequency. However, it also shows relatively large prediction errors in extreme tropical cyclone years (1994 and 1998, for example).  相似文献   

12.
The influence of the interannual variation of cross-equatorial flow(CEF) on tropical cyclogenesis over the western North Pacific(WNP) is examined in this paper by using the tropical cyclone(TC) best track data from the Joint Typhoon Warning Center and the JRA-25 reanalysis dataset. The results showed that the number of TCs forming to the east of 140°E over the southeastern part of the western North Pacific(WNP) is in highly positive correlation with the variation of the CEF near 125° E and 150° E, i.e., the number of tropical cyclogeneses increases when the cross-equatorial flows are strong. Composite analyses showed that during the years of strong CEF, the variations of OLR, vertical wind shear between 200-850 h Pa, 850 h Pa relative vorticity and 200 h Pa divergence are favorable for tropical cyclogenesis to the east of 140°E over the tropical WNP, and vice versa. Moreover, it is also discussed from the view of barotropic energy conversion that during the years of strong CEF, an eastward-extended monsoon trough leads to the rapid growth of eddy kinetic energy over the eastern part of WNP, which is favorable for tropical cyclogenesis;but during the years of weak CEF, the monsoon trough is located westward in the western part of the WNP, consistent with the growth area of eddy kinetic energy. As a result, there are fewer TC geneses over the eastern part of WNP.Besides, the abrupt strengthening of a close-by CEF 2-4 days before tropical cyclogenesis may be the one of its triggers.  相似文献   

13.
西北太平洋热带气旋生成数在不同资料集上的差异性比较   总被引:2,自引:2,他引:0  
比较分析中国气象局(CMA)、美国台风联合警报中心(JTWC)和日本RSMC Tokyo台风中心(JMA)台风资料频次的年际、年代际变化和周期变化特征,结果表明,不同资料中心的热带气旋(TC)、台风(TS强度及以上的TC)生成数的气候值存在一定的差异,热带气旋生成数的差异较为明显,台风生成数的差异相对要小,CMA资料中热带气旋、台风生成数相对偏多;CMA与JTWC间热带气旋生成数年际间变化差异显著而难以忽略,其差异主要来自TD生成数的明显不同;三个中心关于台风生成数的一致性比较好,其中JMA台风资料与另外两个中心资料间的一致更好;CMA与JTWC西北太平洋热带气旋生成数的周期变化间无明显差异,但年代际间变化有明显差异,主要表现为1990年代的反位相;台风生成数资料可能在1960年代后期存在非均一性。  相似文献   

14.
This paper proposes a method for predicting the development of tropical disturbance over the South China Sea(SCS)based on the total latent heat release(TLHR)derived from the Special Sensor Microwave/Imager(SSM/I)satellite observations.A threshold value of daily mean TLHR(3×1014 W)for distinguishing the non-developing and developing tropical disturbances is obtained based on the analysis for 25 developing and 43 non-developing tropical disturbances over the SCS during 2000 to 2005.If the mean TLHR within 500 km of a disturbance on the latest day and its daily mean TLHR during previous life are both greater than 3×1014 W,the disturbance will be a developing one in the future.Otherwise,it is a non-developing one.A real-time testing prediction of tropical cyclogenesis over the SCS was conducted for the years 2007 and 2008 using this threshold value of TLHR.We find that the method is successful in detecting the development of 80%of all tropical disturbances over the SCS in 2007 and 2008.  相似文献   

15.
It has long been known that incipient tropical cyclones (TCs) always occur in synoptic-scale disturbances or tropical cyclogenesis precursors, and the disturbances can intensify only within a limited area during tropical cyclogenesis. An observational analysis of five tropical cyclogenesis events over the western North Pacific during 11 August to 10 September 2004 is conducted to demonstrate the role of synoptic-scale disturbances in establishing a limited area of low-deformation vorticity for tropical cyclogenesis. The analysis of the five tropical cyclogenesis events shows that synoptic-scale tropical cyclogenesis precursors provide a region of low-deformation vorticity, which is measured with large positive values of the Okubo-Weiss (OW) parameter. The OW concentrated areas are within the tropical cyclogenesis precursors with a radius of about 400-500 km and can be found as early as 72 hours prior to the formation of the tropical depression. When the TCs reached the tropical storm intensity, the concentrated OW is confined to an area of 200-300 radius and the storm centers are coincident with the centers of the maximum OW. This study indicates that the tropical cyclogenesis occurs in the low-deformation 18-72 hours prior to the formation of tropical depressions, suggesting the importance of low-deformation vorticity in pre-existent synoptic-scale disturbances. Although the Rossby radius of deformation is reduced in TC genesis precedes, the reduction does not sufficiently make effective conversion of convective heating into kinetic energy within the low-deformation area. Further analysis indicates that the initial development of four of the five disturbances is coupled with the counterclockwise circulation of the mixed Rossby-Gravity (MRG) wave.  相似文献   

16.
This study associates tropical cyclone (TC) activity over the western North Pacific (WNP) with the equatorial wave transition from an interannual viewpoint, revealing that the tropical cyclogenesis mean location may be modulated by a longitudinal shift in the transition of Mixed Rossby-gravity (MRG) waves to off-equatorial tropical depression (TD) disturbances from year to year. To a large extent, the wave transition is attributable to the monsoon trough in response to the thermal state of the warm pool (WP) over the WNP. During the cold state years in the WP, the basic flow confluence region associated with the monsoon trough penetrates eastward, leading to an eastward shift in the location of the wave transition. Such an environment, in which wave accumulation and energy conversion occur, is favorable for tropical cyclogenesis; as a result, the averaged cyclogenesis location moves eastward. The condition is reserved during the warm years in the WP, resulting in the prominent westward-retreating mean TC formation. Citation: Chen, G. H., and R. H. Huang, 2008: Role of equatorial wave transitions in tropical cyclogenesis over the western north Pacific, Atmos. Oceanic Sci. Lett., 1, 64-68  相似文献   

17.
一种对资源不稳定性敏感的EASY-backfill算法   总被引:2,自引:2,他引:0  
利用合成技术对1995—2006年冬季(11月—次年2月)生成在西北太平洋上的34个热带气旋(tropicalcyclone,TC)个例进行分析,研究冬季西北太平洋TC生成的大尺度环流特征及其生成机制,结果表明:冬季TC生成的大尺度环流特征型为东风波西传型;北半球冬季对流层低层出现的跨赤道气旋对是冬季北半球TC形成的重要特征;太平洋中部赤道混合Rossby重力波西北传,与强对流中心重合,性质转为"热带低压型扰动",为冬季热带气旋生成提供扰动源。对合成TC初始场的涡动扰动动能的收支分析表明,涡动有效位能和正压不稳定转换为TC形成提供了能量,这两种能量分别与积云对流加热和水平不均匀气流有关。正压不稳定能量转换为动能主要位于对流层中下层,而扰动有效位能的转换主要位于对流层中上层。低层热带东风波动从平均气流中获得正压不稳定能量,并与强积云对流耦合,热力和动力共同作用下形成TC。  相似文献   

18.
A South China Sea (SCS) local TC (SLT) is defined as a tropical cyclone (TC) that forms within the SCS region and can reach the grade of tropical storm (TS) or above. The statistical features of the SLTs from 1985 to 2007 are analyzed first. It is found that over the SCS about 68% of the TCs can develop into TSs. The SLT intensity is relatively weak and associated with its genesis latitude as well as its track. The SLT monthly number presents a seasonal variation with two peaks in May and July to September. Based on the daily heat flux data from the Woods Hole Oceanographic Institution_Objectively Analyzed air-sea Fluxes (WHOI_OAFlux) in the same period, the air-sea exchange during the process of generation and development of the SLT is studied. Results show that the heat fluxes released to the atmosphere increase significantly day by day before cyclogenesis. The ocean to the south to the TC center provides the main energy. Along with the development of SLT, the regions with large heat fluxes spread clockwise to the north of TC, which reflects the energy dispersion property of vortex Rossby waves in the periphery of the TC. Once the SLT forms the heat fluxes are not intensified as much. During the whole process, the net heat, latent heat and sensible heat flux display a similar evolution, while the latent heat flux makes a main contribution to the net heat flux. The maximum air-sea heat exchange always occurs at the left side of the TC moving direction, which may reflect the influence of the SCS summer monsoon on TC structure.  相似文献   

19.
In order to make inferences on the possible future changes of tropical cyclogenesis frequency, we apply the diagnostic computation of the Yearly Genesis Parameter (YGP) proposed by Gray (1975) to the large-scale fields simulated by a GCM. The YGP is an empirical diagnostic of the frequency of Tropical Cyclones (TCs) based on six physical parameters computed from seasonal means of atmospheric and oceanic variables. In this paper, we apply the YGP diagnostic to the results of three climate simulations performed with the atmospheric General Circulation Model (GCM) of Météo-France: ARPEGE-Climat. In a control simulation of the current climate, it is shown that the model has a realistic tropical climatology and that the computed YGP reproduces the geographical distribution of the tropical cyclogenesis frequency. The YGP is then applied to two simulations corresponding to two scenarios of doubled carbon dioxide concentration. The two experiments differ by the sea surface temperatures (SSTs) used as a lower boundary condition. In both simulations the YGP gives a large increase of total cyclogenesis frequency, but without extension of the area of possible cyclone genesis. The increase in YGP is due essentially to the contribution of the ocean thermal energy factor in the thermodynamical potential. The dynamical parameters, on the contrary, limit the cyclogenesis increase and are a major explanation of the difference between the two experiments. This is in agreement with the results of the previous similar study of Ryan et al. (1992) concerning the importance of large-scale atmospheric circulation modifications on tropical cyclone climatology. After discussing the observed relationships between ocean surface temperature and large-scale convection, and questioning the use of a fixed temperature threshold in the diagnosis of tropical cyclone frequency, we propose a modification to the YGP consisting in replacing the thermodynamical potential by a term proportional to the convective precipitation computed by the GCM. For the simulation of the present climate this modification affects only marginally the geographical distribution of tropical cyclone genesis, but for the doubled CO2 case, the modified YGP diagnoses a more limited increase in TC genesis in the Northern Hemisphere and a small reduction in the Southern Hemisphere, which seems in better agreement with other recent modelling studies with high resolution climate models (Bengtsson et al., 1996). We conclude that the modified YGP based on convective precipitation could serve as a useful diagnostic of tropical cyclone genesis, and should be tested in simulations with other GCMs.  相似文献   

20.
陈光华  黄荣辉 《大气科学》2009,33(2):205-214
利用全球再分析资料以及美国联合台风预报中心的热带气旋(TC)数据, 从动力和能量转换方面深入分析了西北太平洋上空30~60天大气低频振荡(MJO)对西北太平洋区域TC生成的调制作用。研究结果表明, 当西北太平洋西侧为MJO的西风位相所控制时, MJO通过纬向风的辐合作用使得在辐合区传播的波动发生波数增加, 波长减短的结构改变, 从而触发较大尺度波动向天气尺度波动的演变; 西风位相期间纬向风的纬向辐合与经向切变可以使得低频波动动能向高频波动的转换得到加强, 从而使得在此区域TC生成的数量明显偏多。相反, 当西北太平洋西侧为MJO的东风位相时, TC生成的数量得到抑制。此外, 随着西风位相中西风的加强(东风位相中东风的加强), TC的生成概率将得到增加 (减少)。但是, 在西北太平洋东侧海域, MJO对TC活动的调制作用要减弱许多。对MJO活动年际变化的研究表明, 在西太暖池处于暖状态年时, 西北太平洋西侧的MJO活动频繁, 西风位相活跃, 从而有利于此区域TC的生成, 而冷年的情况正好相反。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号