首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Daliangshan tectonic zone is a rhombic area to the east of the Anninghe and Zemuhe fault zones in the middle segment of the Xianshuihe-Xiaojiang fault system along the southeast margin of the Qinghai-Xizang (Tibet) Plateau. Since the Cenozoic era, the neotectonic deformation in the Daliangshan tectonic zone has presented not only sinistral slip and reverse faulting along the Daliangshan fault zone, but also proximate SN-trending crust shortening. It is estimated that the average crust shortening in the Daliangshan tectonic zone is 10.9±1.6 km, with a shortening rate of 17.8±2.2% using the method of balanced cross-sections. The crust shortening from folding occurred mainly in the Miocene and the Pliocene periods, lasting no more than 8.6 Ma. Based on this, a crust shortening velocity of 1.3±0.2 mm/a can be estimated. Compared with the left offset along the Daliangshan fault zone, it is recognized that crust shortening by folding plays an important part in transferring crustal deformation southeastward along the Xianshuihe-Xiaojiang fault system.  相似文献   

2.
2014年2月12日在新疆于田发生7.3级地震,震中位于阿尔金断裂西段,这是继2008年3月21日于田7.3级地震后在塔里木盆地南侧发生的第2次7级地震。这次于田7.3级地震的余震主体沿NE向分布,余震区的西南段呈近SN向分布;绝大部分余震与前震在余震区西南密集分布,强余震(全部的5级以上地震和81%的4级地震)绝大多数都分布在这个区域,第1天的余震主要在这个区域呈近SN向分布,余震由西向东扩展。在这次于田地震的近SN方向上曾在1982、2011以及2012年先后发生过几次6级左右的地震,而这次地震填补了其中的空段。文中从区域构造环境、地震震源机制解和余震分布特征等方面,分析这次地震的发震过程,认为地震发生在硝尔库勒盆地南缘的分支断裂,受阿尔金断裂带构造应力影响,硝尔库勒盆地受到局部近EW向的拉张作用力,首先沿近SN向破裂,这个构造部位的解锁,促进阿尔金断裂左旋错动,产生NE向破裂,应力向东传递;文中还对有历史记录以来,阿尔金断裂上7级地震的发震构造及其对阿尔金断裂带的影响进行了讨论。  相似文献   

3.
ZHANG Xin  DU Xue-bin 《地震地质》1979,42(4):909-922
The Tancheng-Lujiang Fault is an important tectonic boundary in eastern China. The southern part of the Tancheng-Lujiang Fault is located south of Baohai Bay, which is an area with a dense population and frequent economic activities. It is worth conducting an in-depth study on the southern section of the fault, especially in the aspect of geophysical exploration and seismicity analysis. Electrical structure detection is an important way to interpret the structural activity of the fault. It can also analyze and explore the influence of the fault on the physical properties of both sides of the fault based on the geoelectrical observation data. In the study area, there are densely distributed stations of geoelectrical observation, including 27 fixed stations distributed along the fault zone from the southern Baohai Bay to Nanjing, Jinagsu Province. The continuous observations and recording of these stations provide a favorable condition for studying the tectonic activity of Tancheng-Lujiang Fault. In the long-term observation of geoelectric observation network, the geoelectric field measurements of long- and short-spacing measuring tracks in the same direction at the same station vary significantly because of the effect of long-term stability of the observation system and the environment near the electrodes. Also, the data curve changes complicatedly and seems to be in a mess. However, there are three basic facts of observation existing in the geoelectric field change: 1)The variation amplitude of the geoelectric field changes observed on the long- and short-spacing measuring tracks in the same direction at the same station(including tidal response changes and the rapid change events such as short periods or pulses)is the same or very close; 2)The Ex and Ey components at the same station always show the same variation in the same time period, or the opposite, which is related to the anisotropy of the medium under the station; 3)The rapid changes of the minute values of the geoelectric field observed at different stations are synchronous in a wide spatial area. In this study, in order to take full advantage of these basic facts, we only use the amplitude variation of geoelectric field with time. Based on the data of 27 geoelectric field observation stations in the study area, we used the current density vector and streamline to characterize telluric current with its divergence and vorticity calculated in the southern Tancheng-Lujiang Fault in this paper. The results show that: 1)the telluric current shows the phenomenon of opposite directional differentiation in the southern part of the fault zone, the direction of the current vector is NE on the east side, while the direction is NW to SW on the west side; (2)The divergence and vorticity of telluric current also show the differentiation phenomenon along the fault, the positive/negative maximum of vorticity and divergence mainly occurs near the fault zone and the direction of alternating positive and negative gradient(or negative gradient)of vorticity or divergence is consistent with the strike of the fault zone. By analyzing the current superposition simulation results and comparing them with previous studies, an interpretation model of the above phenomenon is established in this paper. The results agree with previous studies on the electrical structure of this region. Besides, the results that telluric current differentiates along the fault zone may improve our understanding of the process of deep electrical and material migration.  相似文献   

4.
The results of Zayü-Qingshuihe MT sounding profile carried out in eastern Tibetan Plateau are presented in this paper. Using 2-D RRI method, the resistivity distribution with depth is obtained along the profile. It is featured by the resistivity zones in the horizontal direction and layers in the vertical direction. The Bangong-Nujiang suture zone and Jinshajiang suture zone are both important electrical conductivity-separating zones in the plateau, and the former is a zone with relatively low resistivity while the latter is an electrical conductivity gradient zone. The highly electrical conductive bodies in the mid and lower crust of northern Qiangtang and Bayan Har Terrain might be caused by regional melting due to shear heating during the process of subduction in tectonic evolution.  相似文献   

5.
刘薇  张晓清  胡玉 《高原地震》2012,(4):20-24,35
利用双差地震定位法对2009年8月28日青海省大柴旦地区发生的Ms6.3级地震及余震序列进行重新定位。结果显示:余震序列主要沿宗务隆山南缘断裂带分布;余震序列优势分布方向为北东东。该序列与宗务隆山南缘断裂带走向一致,与震源区的区域构造基本一致,余震主要分布于主震的南侧。此次地震主震发生在宗务隆山南缘断裂带北侧,Ms6.3级地震主破裂面走向、倾向、倾角与该断裂带产状基本一致,主震破裂面南侧余震活动强于北侧。  相似文献   

6.
郯庐断裂带中南段及邻区Pn波速度结构与各向异性   总被引:5,自引:1,他引:4       下载免费PDF全文
郯庐断裂带是一条纵贯我国大陆东部NNE走向的巨型深断裂,其中南段及邻区(115°E—122°E,29°N—38°N)跨越了华北断块区、扬子断块区和华南褶皱系三大一级构造单元,由于其重要性和复杂性,长期以来一直是地学家们研究的热点.本文从国际地震中心(ISC)、中国地震台网及区域地震台网的地震观测报告中精心挑选出6381个Pn震相数据,用Pn波时间项层析成像法反演得到了郯庐断裂带中南段及邻区上地幔顶部Pn波速度结构和各向异性.结果显示,研究区上地幔顶部具有显著的横向非均匀性,相对于7.95km·s-1的平均速度而言,Pn波速度值在7.68~8.24km·s-1范围内变化.Pn波速度分布在郯庐断裂带中段和南段具有分段性:沿中段及周边存在一NE向低速异常带,低速可能是由于岩石圈的减薄和软流圈的高温物质沿郯庐带上涌导致;沿南段表现为一NNE向弱高波速异常带,作为高低速的边界带清晰地勾勒出了华北与扬子这两个不同块体,该边界在江苏域向华北地块NW方向凹进.Pn波速度各向异性的强弱与速度分布存在一定的相关性.总体上,如鲁西隆起及以南等低速区、茅山断裂附近的高低速过渡带,其速度各向异性较为强烈;而在具有高速异常的苏北盆地、合肥盆地等稳定区域下方其各向异性较弱.本文通过Pn波震相基本未能探测到郯庐断裂带中段的方位各向异性,推测是上地幔顶部被"冻结"下来的各向异性痕迹被软流圈热物质上涌这一强烈构造运动削弱所导致.南段具有与断裂伸展方向近乎平行的快波速方向.Pn波速度横向变化和强震活动存在一定关联.强震主要发生在Pn波低速异常区或高低速过渡带上.郯城8.5级地震震中位于中段和南段高低速过渡带,该区域也是速度横向变化最大的地方,最容易集中应力和产生应力差.  相似文献   

7.
江苏及周缘地区地震精定位与构造意义分析   总被引:1,自引:0,他引:1  
采用双差定位方法,对江苏地震台网记录到的江苏及邻区地震事件(1990-2009年)重新定位,共获取1020个定位结果,震中平均误差为:南北向0.42 km,东西向0.43 km,垂直向0.53 km.精定位后约94%的地震事件震源深度分布在5-20 km范围内,平均震源深度为12.3 km.震源深度自东向西,从海域向陆...  相似文献   

8.
It is important to detect the fine velocity structures of the crust and uppermost mantle to understand the regional tectonic evolution, earthquake generation processes, and to conduct earthquake risk assessment. The inversion of uppermost mantle velocity and Moho depth are strongly influenced by crustal velocity heterogeneity. In this study, we collected first arrivals of Pg and Pn and secondary arrivals of Pg wave from the seismograms recorded at Fujian provincial seismic network stations. New 3-D P-wave velocities were inverted by multi-phase joint inversion method in Fujian Province. Our results show that the fault zones in Fujian Province have various velocity patterns. The shallow crust is characterized by high velocity that represents mountains, while the mid-lower crust shows low velocities. The anomalous velocities are correlated closely with tectonic faults in Fujian Province. Velocity anomalies mainly show NE-trending distribution, especially in the mid-lower crust and uppermost mantle, which is consistent with the NE-trending of the regional main fault zones. Meanwhile, a part of velocity patterns show NW trending, which is related to the secondary NW-oriented faults. Such velocity distribution also shows a geological structural pattern of "zoning in east-west direction and blocking in north-south direction" in Fujian area. In the crust, a low velocity zone is found along Zhenghe-Dapu fault zone as mentioned by previous study, however our result shows the low velocity exists at depth of 20~30km in mid-lower crust. Compared with previous study, this low velocity zone is larger and deeper both in range and depth. The crustal thickness of 28~35km from our joint inversion is similar to the results from the receiver functions of previous studies. The thinnest crust(28km)is observed at offshore in the north of Quanzhou; while the thickest crust(35km)is located west of Zhangzhou near the Zhenghe-Dapu fault zone. Generally, thinner crustal thickness is found in offshore of Fujian Province, and thicker crustal thickness is in the mainland. However, we also found that crustal thickness becomes thinner along the east side of Yongan-Jinjiang Fault. The values of Pn velocities in the region vary from 7.71 to 8.26km/s. The velocity distribution of the uppermost mantle presents a large inhomogeneity, which is correlated with the distribution of the fault zone. High Pn velocity anomalies are found mainly along the west side of the Zhenghe-Dapu fault zone(F2), and the east side of the Shaowu-Heyuan fault zone(F1), which is strip-shaped throughout the central part of Fujian. Low Pn velocity anomalies are observed along the coast and Taiwan Straits, including the Changle-Zhaoan fault zone, the coastal fault zone, and the Fuzhou Basin. We also found a low Pn velocity anomaly zone, which extends to the coast, in the Shaowu-Heyuan fault zone at the junction of the Fujian, Guangdong and Jiangxi Provinces. In the west of Taiwan Straits, both high and low Pn velocity anomalies are observed. Our results show that the historical strong earthquakes(larger than magnitude 6.0) are mainly distributed between positive and negative anomaly zones at different depth profiles of the crust, and similar anomalies distribution also exists at the uppermost mantle, suggesting that the occurrence of strong earthquakes in the region is not only related to the anomalous crustal velocity structure, but also affected by the velocity anomaly structure from the uppermost mantle.  相似文献   

9.
将柯坪块体作为研究对象,利用最大似然法进行b值计算,并结合利用双差定位法对柯坪块体上发生的ML≥1.6地震重定位后的结果,寻找沿柯坪块体主要断裂带的凹凸体。研究发现,柯坪块体上发生地震的震中主要沿断裂带分布,沿柯坪塔格逆断裂带存在凹凸体,该区域虽已发生大地震,但依然处于高应力水平,因此初步判定沿柯坪塔格逆断裂带仍存在发生地震的危险性。  相似文献   

10.
In this study, Qilian Mountain active source airgun signals recorded at 79 stations were obtained after stacking waveforms from July 2015 to December 2016. Based on analysis of the amplitude variation characteristics of the airgun signals, the following conclusions were drawn:along the NW-SE fault distribution direction of the Qilian Mountain area, the decrease in amplitude of airgun signals was relatively slow in relation to the epicentral distance, while the decrease in amplitude in the direction perpendicular to the fault was relatively fast. This difference may be related to the energy loss of seismic waves reflecting and scattering by the regional faults mainly distributed along the NW-SE direction, which are caused by tectonic compression of the Qinghai-Tibet and Alxa blocks.  相似文献   

11.
基于1999—2007年山西断陷带GPS站点位移速率,采用格林函数法计算了山西断陷带地壳10 km深处的最大主应力和最大剪应力变化,并与区域地质构造、中强地震活动及其震源机制解等对比分析,结果表明:山西断陷带中强地震活动受区域构造应力场的控制,现今应力场变化强烈的区域,地震活动水平相对较高,地震震源机制与构造应力场变化特征一致性较强;构造应力场变化和中强地震活动还受构造相关区强震活动的影响,2009年以来忻定盆地原平段至石岭关隆起区中强地震活跃可能与汶川8.0级地震影响有关;山西南部尤其是运城盆地具有较高的背景应力水平,应进一步关注该区域的地震危险性。  相似文献   

12.
乌鲁木齐市断层附近地应力特征与断层活动性   总被引:2,自引:0,他引:2       下载免费PDF全文
为了查明乌鲁木齐西山—碗窑沟断裂带地应力分布特征, 在研究区20 km×20 km的范围内布置12个基岩应力钻孔,采用水压致裂地应力测量技术进行了基岩原地应力测量;共布置了2条观测剖面,第一剖面是沿断层走向布置了7个钻孔,第二剖面在垂直断层走向布置了6个钻孔(与第一剖面共用1个钻孔).根据实测的地应力资料,断层附近最大水平主压应力方向为NE—NEE向,与区域构造应力SN—NNE向主压方向有一些差异,说明受断层活动影响,断层附近的应力状态与区域应力场明显不同.利用地应力实测资料,研究了断层的活动性,在测量深度域内水平和垂直应力的关系为σH>σh>σv,该应力状态有利于逆断层活动,与地质资料反映的以逆断层活动为主基本一致.利用库仑摩擦滑动准则,摩擦系数取0.6~1.0分析,断层附近的现今地应力状态达到或超过产生逆断层摩擦滑动的临界值,表明测区现今构造应力有利于逆断层活动.  相似文献   

13.
李杰  刘代芹  王琪  王晓强  朱治国 《地震研究》2012,35(1):59-65,157
利用GPS数据研究南天山地区地壳运动特征,截取了该区域2005 ~ 2009年GPS数据,在统一框架下进行解算,并绘制出不同时段的主应变、剪应变以及基线变化速率等图像,研究表明该区域的地壳形变具有自西向东、自南向北减弱的特点,主压应变主要表现为受印度板块向北推挤而形成的近南北向压性应力场.2005~2009年基线变化速率表明,以喀什沿经线南北向为界,其东部区域基本上为压缩区,其西部区域基本上为拉张区,东部的基线缩短平均速率(4.84 mm/a)大于西部基线伸长的平均速率(3.06 mm/a),以喀什沿纬线东西向为界,其南部区域基线变化平均速率(5.58 mm/a)明显高于北部区域基线变化平均速率(3.52 mm/a),且伸长、压缩变化速率最大基线均在南部地区,说明南部区域受到塔里木块体和青藏高原挤压比较强烈,表明喀什南部区域地壳运动相对活跃.  相似文献   

14.
Eight submersible dives between 3000 and 4200 m water depth were made off southern Japan in the eastern Nankai subduction zone. Benthic communities associated with chemosynthetic processes were discovered along the 800 m wide active tectonic zone, at the toe of the accretionary prism. A benthic community was also discovered along a zone of active compression, at the foot of Zenisu Ridge, 30 km south of Nankai Trough. Temperature measurements within the sediments below the benthic communities confirm that upward motion of interstitial water occurs there. Studies of water samples indicate advection of methane and light hydrocarbons. Specimens of the benthic community have been shown to have included in their shells carbonate resulting from methane consumption. Thus the benthic communities are related to overpressure-driven fluid advection along tectonic zones with active surface deformation. A 300 m high active scarp at the toe of the accretionary prism is related to relative motion in a 280° direction which is close to the 305° average direction of subduction in this area. The dives establish further that compressive deformation is presently occurring at the foot of Zenisu Ridge. The previous interpretation of the Zenisu Ridge as a zone of recent north-south intraplate shortening, 40 km south of the Nankai Trench, is confirmed. We conclude that tectonic evolution might well lead to future detachment of the Zenisu Ridge and overthrusting of this large piece of oceanic crust over the continental margin. Such a process might be an efficient one to emplace ophiolites over continents.  相似文献   

15.
INTRODUCTIONThe Zhangjiakou-Penglai fault zone has drawnextensive attentionfromseismologists and geologistssince it was determinedinthe1980’s(Zheng Binghua,et al.,1981).Ma Xingyuan,et al.(1989)consideredit asthe north boundaryof North China sub-block.Int…  相似文献   

16.
The Fodongmiao-Hongyazi Fault belongs to the forward thrust fault of the middle segment of northern Qilian Shan overthrust fault zone, and it is also the boundary between the Qilian Shan and Jiudong Basin. Accurately-constrained fault slip rate is crucial for understanding the present-day tectonic deformation mechanism and regional seismic hazard in Tibet plateau. In this paper, we focus on the Shiyangjuan site in the western section of the fault and the Fenglehe site in the middle part of the fault. Combining geomorphic mapping, topographic surveys of the deformed terrace surfaces, optically stimulated luminescence (OSL) dating, terrestrial cosmogenic nuclide dating and radiocarbon (14C) dating methods, we obtained the average vertical slip rate and shortening rate of the fault, which are ~1.1mm/a and 0.9~1.3mm/a, respectively. In addition, decadal GPS velocity profile across the Qilian Shan and Jiudong Basin shows a basin shortening rate of~1.4mm/a, which is consistent with geological shortening rates. Blind fault or other structural deformation in the Jiudong Basin may accommodate part of crustal shortening. Overall crustal shortening rate of the Jiudong Basin accounts for about 1/5 of shortening rate of the Qilian Shan. The seismic activity of the forward thrust zone of Tibetan plateau propagating northeastward is still high.  相似文献   

17.
薛丁 《地震》2008,28(2):74-78
地震构造是强震发生的必要基础,强震的孕育和发生与构造密切相关。强震的孕育和发生不仅与震中周围构造有关,而且与孕震区所在的整个构造带有关。这就表明整个构造带的地震活动性与未来强震都有关联。因此,在做测震学参数异常预测地震时,必须考虑整个构造带的地震活动。过去人们常以震中周围地区的地震活动资料来做测震学参数的异常分析,可能会丢失部分信息。文中以金沙江—红河边界带和地震学参量Mf值的结合为例,对基于活动地块边界带的测震学参数强震预测进行了探索,其结果对丽江地震预测效果很好,这对边界带的地震危险性判定有某种参考价值。  相似文献   

18.
兰州—玛曲地区是印度板块北东向推挤引起青藏块体强烈变形的前缘区,该区的现今构造应力场研究对研究大陆动力学问题具有重要意义.本文给出了兰州—玛曲地区不同地点的现今地应力实测值的大小和方向.测量方法采用压磁应力解除法,测点分别布置在阿姨山、大水、尕海、玛艾以及清水.为系统研究本区及邻近地区现今构造应力场特征,对已有应力实测数据进行了整理分析.研究结果表明,本区及邻区几十米浅表部应力与其他地区相比,属于中等大小量值;应力随深度增加而加大,但在不同构造单元,应力增加梯度有所不同;最大水平主应力方向总体上为北东向,不同构造单元上方向有所不同,鄂尔多斯地块最大水平主应力方向为近东西向,河西走廊带最大水平主应力方向在北北西—北东方向内变化,祁连山东南端最大水平主应力方向变化较大,西秦岭地块是现今地应力的一个过渡带,最大水平主应力方向由北侧的NE向逐渐转变为中部的EW向和南侧的SEE向.本文给出的结果与由GPS观测给出的该区域应变场分布具有一致性.  相似文献   

19.
虎雄林  王强  解朝娣 《地震学报》2015,37(5):747-761
基于2000年7月—2009年6 月龙门山及其邻区的震源机制解资料, 采用Gephart & Forsyth方法, 反演得到了汶川地震前后该地区构造应力主方向的空间分布. 结果显示: 沿鲜水河断裂带及其北部地区, 构造应力场变化显著, 区域构造应力的最大主应力方位由NNW变为NW, 断层错动类型由正断型兼走滑型变为走滑型; 沿龙门山断裂带的构造应力最大主应力方向仍然为近EW和NE向, 但其EW向范围在向NE方向扩张, 其南部汶川地震震中附近异常带范围在收缩. 另一方面, 对上述时间段龙门山及其邻区不同时段构造应力场的反演结果表明, 其构造应力场的特征参数(包括R值、 应力洛德参数μ′以及3个主应力的方位角和仰角等)均从第13时窗开始出现显著变化, 这表明第13时窗(2006年12月—2007年1月)是一个构造应力显著变化的特征窗口. 在该时窗内, 地震能量积累达到一个临界状态, 是汶川MS8.0地震发生的时间节点.   相似文献   

20.
This paper provides the structural analysis of the Chefchaouen area in the northern Rif. Here the Dorsale Calcaire superposes, by means of an excellently exposed thrust fault, onto the Predorsalian succession in turn tectonically covering the Massylian Unit. Hanging wall carbonates of the Dorsale Calcaire Unit form a WSW-verging regional fold with several parasitic structures, deformed by late reverse faults in places indicating an ENE vergence. A 200 m thick shear zone characterizes the upper part of the Predorsalian succession, located at footwall of the Dorsale Calcaire Unit. Here the dominantly pelitic levels are highly deformed by (i) C′ type shear bands indicating a mean WSW tectonic transport and (ii) conjugate extensional shear planes marking an extension both orthogonal and parallel to the shear direction. The Massylian Unit is characterized by a strain gradient increasing toward the tectonic contact with the overlying Predorsalian succession, where the dominantly pelitic levels are so highly deformed so as appearing as a broken formation. Such as the previous succession, conjugate extensional shear bands and normal faults indicate a horizontal extension parallel to the thrust front synchronous with the mainly WSW-directed overthrusting. The whole thrust sheet pile recorded a further shortening, characterized by a NW–SE direction, expressed by several reverse and thrust faults and related folds. Finally strike-slip and normal faults were the last deformation structures recorded in the analyzed rocks. A possible tectonic evolution for these successions is provided. In the late Burdigalian, the Dorsale Calcaire Unit tectonically covered the Predorsalian succession and together the Massylian Unit. The latter two successions were completely detached from their basement and accreted in the orogenic wedge within a general NE–SW shortening for the analyzed sector of the northern Rif. At lithosphere scale the thrust front migration was driven by roll back and slab tear mechanisms producing a synchronous arching and related counterclockwise rotation of the tectonic prism along the African margin. Radial displacement involved extension parallel to the thrust front well-recorded in the analyzed rocks. The NE–SW shortening, probably acting in the Tortonian–Pliocene interval, was related to the final compression of the Rif Chain resulting in out-of-sequence thrusts affecting the whole orogenic belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号