首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
贵阳站气温均一性检验与订正   总被引:3,自引:1,他引:3  
基于贵阳市辖区8个气象观测站近50a月平均气温资料,结合标准正态检验(SNHT)方法,判断出贵阳站气温存在非均一性.借助参考站历史资料序列,对贵阳站气温非均一性断点后的资料采用多元线性回归进行拟合订正,结果表明:贵阳站自2000年迁站后,气温观测值比迁站前低约1.4℃,该成果有助于在今后的气候业务及科研中更好的沿用贵阳站气温历史序列,也将使贵阳站气象要素资料能够在以后的年代里继续保持连续性.  相似文献   

2.
地面气象站环境变化对气温序列均一性影响   总被引:12,自引:3,他引:9  
为研究浙江省地面气象站环境变化对气温序列均一性的影响程度,采用测站历史沿革资料,对全省测站环境的时空演变进行了分析。采用距平累加、偏差界限值、F值检验法,对36个代表站的年平均气温序列进行均一性检验,并对非均一性产生的原因进行分析。结果表明:1971~2004年,浙江省测站的地理环境有显著改变;36站中有39%的测站为非均一性,产生非均一性的测站中,迁站原因占57%,环境恶化占36%;测站迁站引起的非均一性多发生在1980年以后;测站迁站时,新旧站址海拔高度差大且地理环境差异显著是造成气温序列非均一性的主要原因,迁站后气温序列较旧址存在偏高或偏低现象,其值对累年平均值有影响。指出了测站在迁移或环境变化过程中应注意的事项,以助于减少气温序列非均一性。  相似文献   

3.
气象台站的迁移常导致气候序列的非均一性。本文对互助站迁站前后气温序列作均一性检验及订正。采用t检验和SNHT法,对互助站迁站前后的气温序列进行均一性检验,结果表明站址迁移对互助站温度序列均一性的影响非常显著。对差值法、一元线性回归、逐步多元线性回归以及确立订正方程式的参考站平行资料年限对互助站气温序列订正效果进行分析,结果表明用参考站15年平行观测资料建立的逐步多元线性回归订正效果较好。用逐步多元线性回归法对互助站迁站前的气温序列进行订正,经订正后互助站气候倾向率为0.31℃/10a,消除了序列的不均一现象。  相似文献   

4.
兰州站气候资料序列均一性的初步分析   总被引:1,自引:0,他引:1  
气候资料的均一性是研究气候变化的前提条件。以兰州站为例,应用SNHT方法对该站的气候资料序列进行均一性检验,首先对降水、平均气温、最高气温、最低气温、平均风速和日照时数几个气象要素进行非均一性检验,然后根据历史台站沿革等元数据信息进行原因分析。结果表明,兰州站平均风速资料与其邻站相关系数低,未通过显著性检验。降水、气温、最高气温、最低气温、日照与邻站的相关系数都达到99%的显著水平,且都存在不均一性,其原因主要有台站的迁移、仪器的更换、统计方法的变化以及城市热岛效应等,完整详细的元数据信息是均一性研究的重要基础。  相似文献   

5.
气温序列非均一性检验方法的研究   总被引:27,自引:4,他引:27       下载免费PDF全文
采用距平累加法、连续t-检验及回归检验法对分布於25个省(区)31个站的气温序列进行了非均一性检验。结果表明这3种方法在显著性水平α=0.01时,能有效地检验气温序列的非均一性,其结论适用於全国。  相似文献   

6.
为了减少均一性检测结果的不确定性,提高均一性检测结论的可信度,基于可靠证据探讨影响气温序列均一性的可能原因,用3种均一性检测方法对陕西77个台站月平均气温序列进行检测,同时引入台站元数据及卫星遥感影像数据对其结果进行判别,并分析影响气温序列均一性的原因。结果表明:2种及其以上方法检测出的非均一断点36个(占78%)有台站元数据支持,台站站址迁移、观测仪器变更和日平均计算方法改变造成气温序列非均一断点的百分率分别为66.7%、22.2%和11.1%。利用以气象站为中心的缓冲区内土地利用/覆盖变化(LUCC)的卫星遥感影像和台站元数据中的图像文件综合分析认为,台站探测环境的变化是影响潼关站气温序列均一性的重要原因。建议将卫星遥感影像作为台站元数据的补充,以便更加直观、客观地定量描述台站探测环境。  相似文献   

7.
魏娜  孙娴  姜创业  程肖侠 《气象》2012,38(12):1532-1537
利用陕西省74个台站1961-2008年气温资料和台站沿革资料,采用二相回归法进行均一性检测和订正。结果发现台站迁移对气温资料的均一性有明显的影响,陕北台站迁移较少,关中和陕南迁站较多,全省74个台站中有24个台站资料的非均一性是因为台站迁移而引起的,对其中的12个台站进行了调整,使得全省气温序列从南至北分布具有较好的‘均一性’。  相似文献   

8.
山东省观测资料的均一性检验   总被引:3,自引:0,他引:3  
气象台站历史沿革信息包含了可能影响气候资料序列均一性的重要信息,是分析、检验、订正气候资料序列的科学参考依据。通过对站点资料进行均一性检验,再对比台站历史沿革资料,分析了资料非均一性的可能原因。采用山东省123个站建站起至2007年的气温、降水资料,筛选出49个站分别进行4种方法的均一性检验,最终确定22个台站通过检验。对未通过检验的台站,查找沿革,发现迁站是导致非资料均一的主要原因,另外,还有仪器更换、台站加高等原因以及不明原因,需进一步研究。  相似文献   

9.
郭艳君  王国复 《气象学报》2019,77(6):1073-1085
基于118站探空资料研究了近60年中国850—100 hPa气温变化趋势及季节和区域特征,并通过与1979—2017年卫星微波气温的对比研究了中国探空气温均一化的不确定性。研究表明,1958—2017年中国平均对流层气温呈上升趋势,300 hPa升温最为显著,平流层下层(100 hPa)为降温趋势。冬季对流层上层升温趋势和夏季平流层下层降温趋势较强。1979—2017年较整个时段对流层升温趋势较强,平流层下层降温趋势较弱。青藏高原和西北地区对流层上层升温趋势较强。通过与卫星微波气温和邻近探空站探空气温的对比以及均一化前后日夜气温差值检测出中国探空均一化气温仍残存非均一性问题。由于参照序列的局限性,均一化未能完全去除21世纪最初10年中国探空系统变化造成的对流层中、上层至平流层下层气温系统性下降的影响,导致中国对流层上层升温趋势被低估和平流层下层降温趋势被高估。未来可通过参考卫星微波气温和邻近探空站序列调整非均一性订正顺序并增加合理性检验等方法改进中国探空气温均一化方案。   相似文献   

10.
崔妍  徐文慧  李庆祥  赵春雨  周晓宇  敖雪  余君 《气象》2019,45(2):240-250
本文采用惩罚最大T检验(PMT)方法,结合台站历史沿革信息,对东北地区129个气象站月最高气温和最低气温资料进行均一性检验和订正,并与已有均一化数据集(CHHT)进行对比分析。结果表明:气温的非均一性在空间上普遍存在,最高温和最低温分别检测出断点74个和94个,资料拼接和迁站是造成非均一性的重要因素。均一性检验和订正提高了东北地区最高气温和最低气温的空间一致性,线性趋势空间分布更加合理,订正之后变化趋势略有增加,年平均最高气温和最低气温分别由0.1和0.22℃·(10 a)~(-1)增至0.17和0.33℃·(10a)~(-1),与CHHT相比,两套数据时间相关系数在0.9以上,对东北地区气候长期演变趋势基本一致,东北地区年平均最高气温和最低气温均呈显著升温趋势,采用PMT得到的年平均最高气温和最低气温变化趋势较CHHT分别偏高0.05和0.03℃·(10 a)~(-1),在线性趋势空间分布上PMT均一化检验订正结果较CHHT略有改善。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

15.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

16.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

17.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

18.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

19.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

20.
Hourly outgoing longwave radiation(OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite(COMS) has been retrieved since June 2010. The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels. This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm(OLR12.0using the 12.0 μm channel) and three multiple-channel algorithms(OLR10.8+12.0using the 10.8 and 12.0 μm channels; OLR6.7+10.8using the 6.7 and 10.8 μm channels; and OLR All using the 6.7, 10.8, and 12.0 μm channels). The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System(CERES) over the full COMS field of view [roughly(50°S–50°N, 70°–170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5–7 W m-2, which indicates good agreement with CERES OLR over the vast domain. OLR6.7+10.8and OLR All have much smaller errors(~ 6 W m-2) than OLR12.0and OLR10.8+12.0(~ 8 W m-2). Moreover, the small errors of OLR6.7+10.8and OLR All are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration. These results indicate a noteworthy role of the6.7 μm water vapor absorption channel in improving the accuracy of the OLRs. The dependence of the accuracy of COMS OLRs on various surface, atmospheric, and observational conditions is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号