首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, an operational strategy for the maintenance of reservoirs is an important issue because of the reduction of reservoir storage from sedimentation. However, relatively few studies have addressed the reliability analysis including uncertainty on the decrease of the reservoir storage by the sedimentation. Therefore, it is necessary that the reduction of the reservoir storage by the sedimentation should be assessed by a probabilistic viewpoint because the natural uncertainty is embedded in the process of the sedimentation. The objective of this study is to advance the maintenance procedures, especially the assessment of future reservoir storage, using the time-dependent reliability analysis with the Bayesian approach. The stochastic gamma process is applied to estimate the reduction of the Soyang dam reservoir storage in South Korea. In estimating the parameters of the stochastic gamma process, the Bayesian Markov chain Monte Carlo (MCMC) scheme using the informative prior distribution through the empirical Bayes method is applied. The Metropolis–Hastings algorithm is constructed and its convergence is checked by the various diagnostics. The range of the expected life time of the Soyang dam reservoir by the Bayesian MCMC is estimated from 111 to 172 years at a 5 % significance level. Finally, it is suggested that improving the assessment strategy in this study can provide valuable information to the decision makers who are in charge of the maintenance of a reservoir or a dam.  相似文献   

2.
Although water and soil conservation activities reduce reservoir sedimentation, it is inevitable that reservoirs fed by rivers transporting high amounts of sediment will experience sedimentation. The Ghezel-Ozan and Shah-Roud rivers, which flow to the Sefld-Roud reservoir dam, are both highly sediment-laden and transport significant amounts of sediment in both bed load and suspended load forms to the reservoir. Hence, it seems that the only practical way to remove the sediment from the reservoir is to flush it out using the Chasse method. In the present paper, field measurements of Chasse operation characteristics taken in previous years are presented, and a numerical model that simulates this process is introduced. After calibrating the model using field measured data, the calculated results (for reservoir pressure flushing and released sediment volume) of the numerical model were compared with other measured data for the same Chasse operation and the results agree well. Finally, using the numerical simulation results, the best approaches to ensure highly effective flushing while conserving reservoir water are presented (at least for the Sefid-Roud dam). The operation of the bottom outlet gates, the shape of the output hydrograph, and the reservoir water level variation during flushing were optimized. In addition, the numerical model and related parameters, which need to be calibrated, are discussed.  相似文献   

3.
Construction of large dams is attractive because of their great benefits in flood control,hydropower generation,water resources utilization,navigation improvement,etc.However,dam construction may bring some negative impacts on sediment transport and channel dynamics adjustments.Due to the effects of recent water and soil conservation projects,sediment retention in the newly constructed large upstream reservoirs,and other factors,the sedimentation in the Three Gorges Reservoir(TGR)is quite different from the amount previously predicted in the demonstration stage.Consequently,based on the measured data,characteristics of sedimentation and the related channel deformation in the TGR were analyzed.The results imply that sediment transport tended to be reduced after the Three Gorges Project(TGP).Sedimentation slowed dramatically after 2013 and indicated obvious seasonal characteristics.Due to the rising water level in the TGR in the flood season,the yearly sediment export ratio(Eratio)was prone to decrease.The water level near the dam site should be reasonably regulated according to the flow discharge to improve the sediment delivery capacity and reduce sedimentation in the TGR,and to try to avoid situations where the flood retention time is close to 444 h.The depositional belt was discontinuous in the TGR and was mainly distributed in the broad reaches,and only slight erosion or deposition occurred in the gorge reaches.Sedimentation in the broad and gorge reaches accounted for 93.8% and 6.2% of the total sedimentation,respectively.The estuarine reach located in the fluctuating backwater area experienced alternate erosion-deposition,with a slight accumulative deposition in the curved reach.Sedimentation mainly occurred in the perennial backwater area.The insight gained in this study can be conducive to directly understanding of large reservoir sedimentation and mechanism of channel adjustment in the reservoir region in the main channel of large river.  相似文献   

4.
The cascading failure of multiple landslide dams can trigger a larger peak flood discharge than that caused by a single dam failure.Therefore,for an accurate numerical simulation,it is essential to elucidate the primary factors affecting the peak discharge of the flood caused by a cascading failure,which is the purpose of the current study.First,flume experiments were done on the cascading failure of two landslide dams under different upstream dam heights,downstream dam heights,and initial downstream reservoir water volumes.Then,the experimental results were reproduced using a numerical simulation model representing landslide dam erosion resulting from overtopping flow.Finally,the factors influencing the peak flood discharge caused by the cascading failure were analyzed using the numerical simulation model.Experimental results indicated that the inflow discharge into the downstream dam at the time when the downstream dam height began to rapidly erode was the main factor responsible for a cascading failure generating a larger peak flood discharge than that generated by a single dam failure.Furthermore,the results of a sensitivity analysis suggested that the upstream and downstream dam heights,initial water volume in the reservoir of the downstream dam,upstream and downstream dam crest lengths,and distance between two dams were among the most important factors in predicting the flood discharge caused by the cascading failure of multiple landslide dams.  相似文献   

5.
An efficient procedure is developed for the hydrodynamic analysis of dam–reservoir systems. The governing equations of hydrodynamic pressure in the frequency as well as time domain are derived in the framework of the scaled boundary finite element method. The water compressibility and absorption of reservoir sediments can be conveniently taken into consideration. By extending the reservoir to infinity with uniform cross-section, only the dam–reservoir interface needs to be discretized to model the fluid domain, and the hydrodynamic pressure in the stream direction is solved analytically. Several numerical examples including a gravity dam with an inclined upstream face and an arch dam with a reservoir of arbitrary cross-section are provided to demonstrate the computational efficiency and accuracy of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
基于接触非线性有限元模型,以锦屏一级拱坝为例,库水分别采用附加质量模型、可压缩流体有限元模型、不可压缩流体有限元模型计算了正常蓄水位及运行低水位时坝体的动力响应,结果表明:库水模型对拱坝动力响应有较大影响,随库水深度的增大,各模型计算结果差异增大;相比于流体可压缩模型,采用不可压缩流体模型所得动力响应普遍偏大;运行低水位工况,由于静水压力减小导致拱效应减弱,从而降低了拱坝的整体性,因此运行低水位工况各缝开度普遍高于正常蓄水位工况,且其拉应力范围较大,因此,运行低水位工况将对抗震设计起控制作用。  相似文献   

7.
Withdrawal of water from a river into a canal involves the construction of a barrage or a dam across the river depending on whether the river is perennial or not. The design of the reservoir upstream of the dam and of the canal requires consideration of the sediment load carried by the river in case the river is sediment-laden. The basic equations concerning morphological changes in such rivers are discussed with particular reference to computation of reservoir sedimentation. The hydraulics of lined canals carrying wash load is examined from the point of view of limiting transport capacity and changes in frictional resistance. Lastly, the methods of design of sediment extraction devices like settling basins and vortex chambers are presented.  相似文献   

8.
新疆克孜尔水库诱发地震的形成条件和诱发机制问题初探   总被引:1,自引:0,他引:1  
翟世龙 《内陆地震》2002,16(1):89-96
克孜尔水库自 1991年 8月下闸蓄水后 ,穿过水库大坝的 F2 活断层 (克孜尔活断层 )出现了水平和垂直形变的特大异常变化。分析后认为是前期水库施工开挖土石方、填筑土石方及水库蓄水引起地面负荷变化的综合效应所致 ,同时地震活动规律也产生了与形变同步的异常变化。综合测震、水文、地质分析认为 :1水库蓄水可以诱发地震 ,震级主要在 MS3.0级以下 ;2蓄水诱发 F1活断层 (却勒塔格活断层 )上中等地震的可能性比较大 ,而诱发 F2 活断层上中等地震的可能性则很小  相似文献   

9.
Among the difficulties that influence future dam operations,reservoir sedimentation is the most problematic for engineers.This study predicted the amount and pattern of sedimentation for use in estimation of the useful lifespan of reservoirs and identification of optimal locations for outlets and intakes at the initial stages of dam design.Hydrographic surveys of different dams can provide better insight into this phenomenon.Latian Dam in Iran has conducted hydrographic surveys during 7 time periods.The amount and process of sedimentation in this reservoir were determined,and predictions of distribution of sediments were validated by well-known,common methods.The formation of a delta in the reservoir was investigated for different time periods after operation.Future problems due to the impacts of sedimentation on dam operation and the useful lifespan of the reservoir were predicted.In addition,the study results may be used for developing empirical methods to predict sedimentation patterns in other reservoirs.  相似文献   

10.
Two processes using the Newmark implicit integration scheme are presented for the analysis of the earthquake response of a three-dimensional model for arch dam-reservoir systems including the effect of compressibility of the water. The solid structure and fluid regions are modelled separately, and the forcing functions at the interface are due to the hydrodynamic pressures from the reservoir acting on the upstream face of the dam wall, and the accelerations from the dam wall acting in turn on the reservoir. For the purposes of an initial investigation, elastic properties are assumed for the material of the dam, whilst in the reservoir radiation damping at the upstream boundary has been included, but bottom absorption has not. The excitation is provided by means of a combisweep which is fashioned so that its continuously varying frequencies pass through the fundamental frequencies of both the arch dam-reservoir system and the reservoir alone. Consequently the response is highly resonant, thus providing a severe test for the numerical procedures. From the numerical results obtained for an example problem it is concluded that both schemes provide an acceptable solution to the problem posed, and the possibility of enhancement to cater for more complex situations is discussed.  相似文献   

11.
浙江湖南镇水库的诱发地震   总被引:5,自引:7,他引:5       下载免费PDF全文
1982年和1983年汛期在水库地震区设立密集地震台网。观测表明,地震群集在水库近岸,深度仅几百米。地震与库水位的急剧升降几乎同时出现。几百次单个地震的震源机制解显示出以逆断层和正断层机制为主。地震是库水渗入后在库岸局部应力和岩体重力作用下沿小断层、节理错动的结果,发生破坏性地震的可能性很小  相似文献   

12.
Experimental findings and observations indicate that plunging flow is related to the formation of bed load deposition in dam reservoirs. The sediment delta begins to form in the plunging region where the inflow river water meets the ambient reservoir water. Correct estimation of dam reservoir flow, plunging point, and plunging depth is crucial for dam reservoir sedimentation and water quality issues. In this study, artificial neural network (ANN), multi‐linear regression (MLR), and two‐dimensional hydrodynamic model approaches are used for modeling the plunging point and depth. A multi layer perceptron (MLP) is used as the ANN structure. A two‐dimensional model is adapted to simulate density plunging flow through a reservoir with a sloping bottom. In the model, nonlinear and unsteady continuity, momentum, energy, and k–ε turbulence equations are formulated in the Cartesian coordinates. Density flow parameters such as velocity, plunging points, and plunging depths are determined from the simulation and model results, and these are compared with previous experimental and model works. The results show that the ANN model forecasts are much closer to the experimental data than the MLR and mathematical model forecasts.  相似文献   

13.
LINTRODUCTIONJinghongHydraulicPowerPlant,locatedintheload,erreachesofLanchangmyer,trib.ofMekong,isintheNorthOfJinghongCity.Thepowerstationisamultipurposehydro-junction,includingelectricpowergeneration,shipping,floodcontrol,cultivahonandwatersupply.SimaoPort,animportanttransportcenterinSimaoDistriCt,YunnanProvince,isabollt80kmaamsuPStreamofthedam.Anerthereservoirisimpounded,thewaterstagewillriseandagreatamountofsedimentwillbedepositedintheriverbedinevitably.Asaresult,itisverylikelyt…  相似文献   

14.
This study focused on the effects of upstream reservoir thermal dynamics and downstream tidal influences on temperatures in a 25-km reach of Alouette River (coastal British Columbia, Canada) below a control dam and upstream of its confluence with Pitt River. Temperature was monitored during summer 2013 using 25 sensors. Water was released from the reservoir through a low level outlet at approximately 2.7 m3 s−1, except during late spring when a higher flow was released over the dam spillway. Temperature variations in the lowest section of Alouette River, and in the lower portion of a tributary, were distinct from those further upstream due to backwatering effects associated with a semi-diurnal tide, which can cause flow reversals in Pitt River. An internal seiche was identified in the reservoir during mid-summer that resulted in oscillating releases of warmer and cooler water with an amplitude of up to 6°C and a period of approximately 12 hr. Wavelet analysis and band-pass filtering indicated that the 12-hr signal declined in strength with downstream distance, but remained detectable about 15 km below the dam. In contrast, the 24-hr diel signal increased in strength with distance below the dam. Travel times computed via cross-correlation of the 12-hr signals with that at the low level outlet were within ±10% of those estimated from measured mean velocities. Lagrangian tracking of water parcels using the derived travel times indicated that the cooling effect of periodic releases of cold water during the seiching period persisted to the lower extent of the non-tidal reach. The tidally influenced locations experienced higher temperatures than those recorded in the non-tidal portion of Alouette River, although the relative roles of heating in the upstream tidal reach versus upstream advection of water associated with tide-driven flow reversals in Pitt River require further study.  相似文献   

15.
陈勇  ;汤用泉 《地震学刊》2014,(6):731-735
无基坑振冲加密施工是一种比较先进的土石坝建筑方法。以海南省三亚市西部的宁远河中下游河段的大隆水利枢纽工程土石坝为研究对象,对其进行准确分区,以饱和-非饱和渗流理论为基础,通过三维有限元数值方法,模拟库水下降作用下的土石坝渗流场,并对各级水位下的孔压、流速及流向进行分析,评价大坝的渗流安全。研究结果表明:采用无基坑振冲加密施工方法后,坝体内填砂砾振冲层形成上游排水通道,在坝前水位骤降工况下,防渗土料内有效流速方向和渗透压力的方向由近水平的指向坝面变为竖直向下指向填砂砾振冲层,而且有效流速明显变大,利于渗透水通过填砂砾振冲层排到下游,有利于上游坝体稳定。  相似文献   

16.
An analysis procedure in the frequency domain is developed for determining the earthquake response of two-dimensional concrete gravity and embankment dams including hydrodynamic effects; responses of the elastic dams and compressible water are assumed linear. The dam and fluid domain are treated as substructures and modelled with finite elements. The only geometric restriction is that an infinite fluid domain must maintain a constant depth beyond some point in the upstream direction. For such an infinite uniform region, a finite element discretization over the depth is combined with a continuum representation in the upstream direction. The fluid domain model approximately accounts for interaction between the fluid and underlying foundation medium through a damping boundary condition applied along the reservoir bottom, while the dam foundation is assumed rigid. Several examples are presented to demonstrate the accuracy of the fluid domain model and to illustrate dam responses obtained from the analysis procedure.  相似文献   

17.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   

18.
Dynamic response of dams is significantly influenced by foundation stiffness and dam-foundation interaction. This in turn, significantly effects the generation of hydrodynamic pressures on upstream face of a concrete dam due to inertia of reservoir water. This paper aims at investigating the dynamic response of dams on soil foundation using dynamic centrifuge modelling technique. From a series of centrifuge tests performed on model dams with varying stiffness and foundation conditions, significant co-relation was observed between the dynamic response of dams and the hydrodynamic pressures developed on their upstream faces. The vertical bearing pressures exerted by the concrete dam during shaking were measured using miniature earth pressure cells. These reveal the dynamic changes of earth pressures and changes in rocking behaviour of the concrete dam as the earthquake loading progresses. Pore water pressures were measured below the dam and in the free-field below the reservoir. Analysis of this data provides insights into the cyclic shear stresses and strains generated below concrete dams during earthquakes. In addition, the sliding and rocking movement of the dam and its settlement into the soil below are discussed.  相似文献   

19.
赵鑫  周阳 《地震工程学报》2018,40(4):867-872
土石坝坝体在坝前水位作用下极易产生渗流,为研究坝体加固对渗透水压的影响,针对具体水库实例,采用有限元法对除险加固前/后的坝体进行渗透坡降、单宽渗流量、准流网等计算,分析3种工况下的渗流过程,为土石坝的除险加固设计提供参考。结果表明:加固后上游坡各工况下的安全系数明显提高,其中单宽渗流量最大,可达0.636m~3/d,远大于规范允许值。  相似文献   

20.
An integrative seismic safety evaluation of an arch dam should include all sources of nonlinearities, dynamic interactions between different components and the external loads. The present paper investigates the calibration procedure and nonlinear seismic response of an existing high arch dam. The first part explains the conducted analyses for the static and thermal calibrations of the dam based on site measurements. The second part investigates the nonlinear seismic analysis of the calibrated model considering the effect of joints, cracking of mass concrete, reservoir–dam–rock interaction, hydrodynamic pressure inside the opened joints and the geometric nonlinearity. Penetration of the water inside the opened joints accelerates the damage process. The integrative seismic assessment of a case study shows that the dam will fail under the maximum credible earthquake scenario. The dam is judged to be severely damaged with extensive cracking and the joints undergo opening/sliding. A systematic procedure is proposed for seismic and post-seismic safety of dams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号