首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文基于具备间断捕捉能力的二阶全非线性Boussinesq数值模型,对规则波和随机波在礁坪地形上的传播变形进行了数值模拟。该模型采用高阶有限体积法和有限差分方法求解守恒格式的控制方程,将波浪破碎视为间断,同时采用静态重构技术处理了海岸动边界问题。重点针对礁坪上波浪传播过程中的波高空间分布和沿程衰减,礁坪上的平均水位变化,以及波浪能量频谱的移动和空间差异等典型水动力现象开展数值计算。将数值结果与实验结果对比,两者吻合情况良好,验证了模型具有良好的稳定性,具备模拟破碎波浪和海-岸动边界的能力,能较为准确地模拟波浪在礁坪地形上的传播过程中发生的各种水动力现象。  相似文献   

2.
In this paper, a hybrid finite volume-finite difference scheme is applied to study surf zone dynamics. The numerical model solves the 2DH extended Boussinesq equations proposed by Madsen and Sørensen (1992) where nonlinear and dispersive effects are both relevant whereas it solves NSWE equations where nonlinearity prevails. The shock-capturing features of the finite volume method allow an intrinsic representation of wave breaking and runup; therefore no empirical (calibration) parameters are necessary. Comparison with laboratory measurements demonstrates that the proposed model can accurately predict wave height decay and mean water level setup, for both regular and solitary wave breaking on a sloping beach. The model is also applied to reproduce two-dimensional wave transformation and breaking over a submerged circular shoal, showing good agreement with experimental data.  相似文献   

3.
A nearshore wave breaking model   总被引:4,自引:0,他引:4  
AnearshorewavebreakingmodelLiShaowu,WangShangyi,TomoyaShibayama(ReceiuedOctober8,1996;acceptedFebruary26,1997)Abstract-Awaveb...  相似文献   

4.
This paper describes the development of a numerical model for wave overtopping on seadikes. The model is based on the flux-conservative form of the nonlinear shallow water equations (NLSW) solved with a high order total variation diminishing (TVD), Roe-type scheme. The goal is to reliably predict the hydrodynamics of wave overtopping on the dike crest and along the inner slope, necessary for the breach modelling of seadikes. Besides the mean overtopping rate, the capability of simulating individual overtopping events is also required. It is shown theoretically that the effect of wave breaking through the drastic motion of surface rollers in the surfzone is not sufficiently described by the conventional nonlinear shallow water equations, neglecting wave setup from the mean water level and thus markedly reducing the model predictive capacity for wave overtopping. This is significantly improved by including an additional source term associated with the roller energy dissipation in the depth-averaged momentum equation. The developed model has been validated against four existing laboratory datasets of wave overtopping on dikes. The first two sets are to validate the roller term performance in improving the model prediction of wave overtopping of breaking waves. The last two sets are to test the model performance under more complex but realistic hydraulic and slope geometric conditions. The results confirm the merit of the supplemented roller term and also demonstrate that the model is robust and reliable for the prediction of wave overtopping on seadikes.  相似文献   

5.
一种近岸区波浪破碎模型   总被引:7,自引:0,他引:7  
从波浪破碎的能量关系入手,以紊流能量方程为基础,考虑破碎区内单个波在不同破碎阶段所提供的紊动能量强度的变化过程,提出了一种波浪破碎模式.通过将这一模型引入Boussinesq方程中,初步建立了一种近岸区波浪变形数学模型,并用波浪水槽实验资料对模型模拟波高和平均水位的情况进行了初步验证,得到了良好的结果.  相似文献   

6.
New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations for regular waves to random waves. The nonlinear effect of amplitude dispersion is incorporated approximately into the model by only considering the nonlinear effect on the carrier waves of random waves, which is done by introducing a representative wave amplitude for the carrier waves. The computation time is greatly saved by the introduction of the representative wave amplitude. The extension of the present model to breaking waves is also considered in order to apply the new equations to surf zone. The model is validated for random waves propagate over a shoal and in surf zone against measurements.  相似文献   

7.
In this paper we study the breaking of long waves propagating along an open channel with linear friction on the bottom. The equations governing the wave propagation consist of a pair of first-order nonlinear hyperbolic partial differential equations (PDEs). We first transformed the PDEs into a pair of ordinary differential equations (ODEs) along the characteristic directions by means of a pair of Riemann invariants. By analyzing the ODEs, we found that the breaking of waves can be identified by the singularity of the derivative of the Riemann invariants. Thus, we derived an analytical solution for the derivative of the Riemann invariants. Then, a breaking criterion and an analytical formula for the estimation of breaking time were developed and validated through numerical experiments. It is also shown in the paper that the present model includes the previous model neglecting bottom friction as a special case.  相似文献   

8.
Based on the Hamiltonian formulation of water waves, using Hamiltonian consistent modelling methods, we derive higher order Hamiltonian equations by Taylor expansions of the potential and the vertical velocity around the still water level. The polynomial expansion in wave height is mixed with pseudo-differential operators that preserve the exact dispersion relation. The consistent approximate equations have inherited the Hamiltonian structure and give exact conservation of the approximate energy. In order to deal with breaking waves, we extend the eddy-viscosity model of Kennedy et al. (2000) to be applicable for fully dispersive equations. As breaking trigger mechanism we use a kinematic criterion based on the quotient of horizontal fluid velocity at the crest and the crest speed. The performance is illustrated by comparing simulations with experimental data for an irregular breaking wave with a peak period of 12 s above deep water and for a bathymetry induced periodic wave plunging breaker over a trapezoidal bar. The comparisons show that the higher order models perform quite well; the extension with the breaking wave mechanism improves the simulations significantly.  相似文献   

9.
A new form of hyperbolic mild slope equations is derived with the inclusion of the amphtude dispersion of nonlinear waves. The effects of including the amplitude dispersion effect on the wave propagation are discussed. Wave breaking mechanism is incorporated into the present model to apply the new equations to surf zone. The equations are solved nu- merically for regular wave propagation over a shoal and in surf zone, and a comparison is made against measurements. It is found that the inclusion of the amplitude dispersion can also improve model' s performance on prediction of wave heights around breaking point for the wave motions in surf zone.  相似文献   

10.
A one-dimensional high-resolution finite volume model capable of simulating storm waves propagating in the coastal surf zone and overtopping a sea wall is presented. The model (AMAZON) is based on solving the non-linear shallow water (NLSW) equations. A modern upwind scheme of the Godunov-type using an HLL approximate Riemann solver is described which captures bore waves in both transcritical and supercritical flows. By employing a finite volume formulation, the method can be implemented on an irregular, structured, boundary-fitted computational mesh. The use of the NLSW equations to model wave overtopping is computationally efficient and practically flexible, though the detailed structure of wave breaking is of course ignored. It is shown that wave overtopping at a vertical wall may also be approximately modelled by representing the wall as a steep bed slope. The AMAZON model solutions have been compared with analytical solutions and laboratory data for wave overtopping at sloping and vertical seawalls and good agreement has been found. The model requires more verification tests for irregular waves before its application as a generic design tool.  相似文献   

11.
建立了求解一维全非线性Green-Naghdi水波方程的中心有限体积/有限差分混合数值格式。采用结构化网格对守恒形式的控制方程进行离散和积分,界面数值通量采用有限体积法计算,剩余项则采用中心有限差分格式求解。其中,采用中心迎风有限体积格式计算控制体界面数值通量,并结合界面变量的线性重构方法,使其在空间上具有四阶精度,通过引入静压重构技术和波浪破碎指标使模型具备处理海岸水-陆动边界及波浪破碎的能力。时间积分则采用具有总时间变差减小(Total Variation Diminishing,TVD)性质的三阶龙格-库塔法进行。应用该模型对孤立波在常水深和斜坡海岸上的传播过程及规则波跨越潜堤传播的实验进行了数值模型研究,数值计算同解析解及实验数据吻合良好。  相似文献   

12.
This paper describes methods and results of research for incorporating four different parameterized wave breaking and dissipation formulas in a coastal wave prediction model. Two formulations assume the breaking energy dissipation to be limited by the Rayleigh distribution, whereas the other two represent the breaking wave energy by a bore model. These four formulations have been implemented in WABED, a directional spectral wave model based on the wave action balance equation with diffraction, reflection, and wave–current interaction capabilities. Four parameterized wave breaking formulations are evaluated in the present study using two high-quality laboratory data sets. The first data set is from a wave transformation experiment at an idealized inlet entrance, representing four incident irregular waves in a slack tide and two steady-state ebb current conditions. The second data set is from a laboratory study of wave propagation over a complex bathymetry with strong wave-induced currents. Numerical simulation results show that with a proper breaking formulation the wave model can reproduce laboratory data for waves propagating over idealized or complicated bathymetries with ambient currents. The extended Goda wave breaking formulation with a truncated Rayleigh distribution, and the Battjes and Janssen formulation with a bore model produced the best agreement between model and data.  相似文献   

13.
1 .IntroductionApile supportedplatesubmergedatacertaindepthunderseasurfacewasdevelopedasanewtypeofunderwaterbreakwaterfortheprotectionofcoastlinesandharbors .Thisisbecauseitdoesnothinderthewaterexchangebetweentheopenseaandtheprotectedareanordoesithindertheviewovertheopensea .Besides,itislessdependentonthegeotechnicalconditionsoftheseabottomwherethestructureistobeinstalled ;however,itscostishigh ,particularlyinrelativelydeepwaters .Formanyapplicationsitispossibletoreducethewavemotionintheprotec…  相似文献   

14.
P. Bonneton   《Ocean Engineering》2007,34(10):1459-1471
In this paper, we analyse the ability of the nonlinear shallow-water (NSW) equations to predict wave distortion and energy dissipation of periodic broken waves in the inner surf zone. This analysis is based on the weak-solution theory for conservative equations. We derive a new one-way model, which applies to the transformation of non-reflective periodic broken waves on gently sloping beaches. This model can be useful to develop breaking-wave parameterizations (in particular broken-wave celerity expression) in both time-averaged wave models and time-dependent Boussinesq-type models. We also derive a new wave set-up equation which provides a simple and explicit relation between wave set-up and energy dissipation. Finally, we compare numerical simulations of both, the NSW model and the simplified one-way model, with spilling wave breaking experiments and we find a good agreement.  相似文献   

15.
Wave dissipation by vegetation with layer schematization in SWAN   总被引:1,自引:0,他引:1  
The energy of waves propagating through vegetation is dissipated due to the work done by the waves on the vegetation. Dalrymple et al. (1984) estimated wave dissipation by integrating the force on a cylinder over its vertical extent. This was extended by Mendez and Losada (2004) to include varying depths and the effects of wave damping due to vegetation and wave breaking for narrow-banded random waves. This paper describes the wave dissipation over a vegetation field by the implementation of the Mendez and Losada formulation in a full spectrum model SWAN, with an extension to include a vertical layer schematization for the vegetation. The present model is validated with the original equation and results from Mendez and Losada (2004). The sensitivity of the model to the shape of the frequency spectrum, directional spreading and layer schematization are investigated. The model is then applied to field measurements by using a vegetation factor. This model has the ability to calculate two-dimensional wave dissipation over a vegetation field including some important aspects such as breaking and diffraction as used in SWAN model.  相似文献   

16.
The FUNWAVE model is used for simulating simulation of monochromatic and irregular wave propagation in a channel with a bar-trough profile. FUNWAVE is based upon the extended Boussinesq equations. The study aims to analyze the model's performance when simulating shoaling, wave breaking and nonlinear interactions that are present in nearshore wave propagation. For that, high-order time domain statistics (root mean-square wave height, skewness, asymmetry and the kurtosis) of the model simulations and of the observations were compared along the whole channel. Also, a frequency domain analysis including standard spectral analysis and the bispectrum was carried out in selected points of the flume. The evaluation included the role of the wave breaking internal model parameters. The main conclusion is that, in general, the one-dimensional version of FUNWAVE simulates quite well the nonlinear transformation of a wave over a bottom with a bar-tough profile, for both regular and irregular wave conditions. The model reproduces the transformation of the wave shape, specially the increasing sharper wave crests and flatter troughs and also the lack of vertical symmetry with crests pitching forward, as it propagates along the domain. However, some differences persist after wave breaking, mainly due to the nature of the wave-breaking module. In this module, the energy dissipation is induced by the increase of viscosity, a rather simple mechanism, without the modification of the wave shape. Also, the energy dissipation develops in a smooth way which is appropriated for spilling breaking waves, but not for plunging breaking waves where the dissipation starts more abruptly.  相似文献   

17.
为模拟潜堤上破碎波浪传播时产生能量的耗散这一特性,在改进的具有四阶色散的Boussinesq水波方程中中入二阶紊动粘性项,建立了考虑波浪破碎的水波数学模型.在非交错网格下建立了有限差分数值模型,并利用三阶Adams-Bash forth格式预报、四阶Adams-Mouton格式校正对数值模型进行求解.通过数值试验,模拟...  相似文献   

18.
在二阶 Boussinesq 方程基础上,通过引入含水深导数项对该方程进行了理论上的改进,使得该方程在应用于无限沙坝 Bragg反射问题时与理论解析解在更大范围内符合.基于该改进的高阶 Boussinesq 方程,在非交错网格下建立了混合 4 阶的Adams-Bashforth- Moulton 格式的数学模型.将数值模型应用到有限个连续沙坝上波浪传播变形问题的数值模拟中,通过两点法给出数值波浪反射系数,将这些反射系数与已有的实验数据进行对比,对比表明改进后的模型计算出的反射系数与实验结果吻合更好,这验证了本文理论改进的有效性.  相似文献   

19.
A numerical model that solves the unsteady, incompressible, Reynolds averaged, Navier–Stokes equations has been utilized to simulate 57 cases of monochromatic, breaking waves over a sloping bed. The Volume of Fluid technique is used to track the complex, discontinuous free surface and the Renormalized Group turbulence model is used for closure. The model is validated by comparing predictions with Particle Image Velocimetry data and other empirical results. The model results are used to determine a relationship between the incipient wave breaking height and the maximum orbital velocity as well as a relationship between surf zone width and breaker type. Such expressions may be useful for remote sensing methods like Synthetic Aperture Radar to derive breaker height and classification from image data.  相似文献   

20.
《Coastal Engineering》2001,42(1):53-86
A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence is described by large eddy simulation where the larger turbulent features are simulated by solving the flow equations, and the small scale turbulence that is not resolved by the flow model is represented by a sub-grid model. A simple Smagorinsky sub-grid model has been used for the present simulations. The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved. The surface is still specified to be uniform in the transverse (alongshore) direction, and it is only the flow field that is three-dimensional.The turbulent structures are investigated under different breaker types, spilling, weak plungers and strong plungers. The model is able to reproduce complicated flow phenomena such as obliquely descending eddies. The turbulent kinetic energy is found by averaging over the transverse direction. In spilling breakers, the turbulence is generated in a series of eddies in the shear layer under the surface roller. After the passage of the roller the turbulence spreads downwards. In the strong plunging breaker, the turbulence originates to a large degree from the topologically generated vorticity. The turbulence generated at the plunge point is almost immediately distributed over the entire water depth by large organised vortices. Away from the bed, the length scale of the turbulence (the characteristic size of the eddies resolved by the model) is similar in the horizontal and the vertical direction. It is found to be of the order one half of the water depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号