首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Statistical analysis of the extreme values of the Baltic Sea level has been performed for a series of observations for 15–125 years at 13 tide gauge stations. It is shown that the empirical relation between value of extreme sea level rises or ebbs (caused by storm events) and its return period in the Baltic Sea can be well approximated by the Gumbel probability distribution. The maximum values of extreme floods/ebbs of the 100-year recurrence were observed in the Gulf of Finland and the Gulf of Riga. The two longest data series, observed in Stockholm and Vyborg over 125 years, have shown a significant deviation from the Gumbel distribution for the rarest events. Statistical analysis of the hourly sea level data series reveals some asymmetry in the variability of the Baltic Sea level. The probability of rises proved higher than that of ebbs. As for the magnitude of the 100-year recurrence surge, it considerably exceeded the magnitude of ebbs almost everywhere. This asymmetry effect can be attributed to the influence of low atmospheric pressure during storms. A statistical study of extreme values has also been applied to sea level series for Narva over the period of 1994–2000, which were simulated by the ROMS numerical model. Comparisons of the “simulated” and “observed” extreme sea level distributions show that the model reproduces quite satisfactorily extreme floods of “moderate” magnitude; however, it underestimates sea level changes for the most powerful storm surges.  相似文献   

2.
浮式平台承受风浪流等多种海洋环境载荷作用,呈现出复杂的运动学响应状态.通过对"南海挑战号"半潜式平台的实测六自由度响应数据进行分析,采用广义极值分布建立六自由度响应的概率密度和分布模型,并通过K-S(Kolmogorov-Smirnov)检验验证了分布模型的合理性,进而开展了对该平台多年一遇重现期的六自由度响应极值预测研究.通过与平台的初始设计指标进行对比,发现平台的横荡、纵荡等五个自由度表现良好,而垂荡的响应极值超出设计指标,在现场作业中应予以注意研究成果对平台的安全作业具有辅助指导意义,可将预测结果作为极端恶劣海况下,人员提前撤离的辅助决策支持.通过更新平台的监测数据进行极值分析和预测研究可评估平台的性能变化行为.  相似文献   

3.
以杭州湾为例,根据水文站历史潮位资料,采用改进的灰色马尔可夫预测模型对台风诱发暴潮的极端潮位进行预测.同时采用复合极值分布理论对可能出现的极端潮位进行概率预测,使预测结果更为接近真实数值.  相似文献   

4.
Robust prediction of extreme motions during wind farm support vessel(WFSV)operation is an important safety concern that requires further extensive research as offshore wind energy industry sector widens.In particular,it is important to study the safety of operation in random sea conditions during WFSV docking against the wind tower,while workers are able to get on the tower.Docking is performed by thrusting vessel fender against wind tower(an alternative docking way by hinging is not studied here).In this paper,the finite element software AQWA has been used to analyze vessel response due to hydrodynamic wave loads,acting on a specific maintenance ship under actual sea conditions.Excessive roll may occur during certain sea conditions,especially in the beam sea,posing a risk to the crew transfer operation.The Bohai Sea is the area of diverse industrial activities such as offshore oil production,wave and wind power generation,etc.This paper advocates a novel method for estimating extreme roll statistics,based on Monte Carlo simulations(or measurements).The ACER(averaged conditional exceedance rate)method and its modification are presented in brief detail in Appendix.The proposed methodology provides an accurate extreme value prediction,utilizing available data efficiently.In this study the estimated return level values,obtained by ACER method,are compared with the corresponding return level values obtained by Gumbel method.Based on the overall performance of the proposed method,it is concluded that the ACER method can provide more robust and accurate prediction of the extreme vessel roll.The described approach may be well used at the vessel design stage,while defining optimal boat parameters would minimize potential roll.  相似文献   

5.
A non-traditional fuzzy quantification method is presented in the modeling of an extreme significant wave height. First, a set of parametric models are selected to fit time series data for the significant wave height and the extrapolation for extremes are obtained based on high quantile estimations. The quality of these results is compared and discussed. Then, the proposed fuzzy model, which combines Poisson process and generalized Pareto distribution(GPD) model, is applied to characterizing the wave extremes in the time series data. The estimations for a long-term return value are considered as time-varying as a threshold is regarded as non-stationary. The estimated intervals coupled with the fuzzy theory are then introduced to construct the probability bounds for the return values. This nontraditional model is analyzed in comparison with the traditional model in the degree of conservatism for the long-term estimate. The impact on the fuzzy bounds of extreme estimations from the non stationary effect in the proposed model is also investigated.  相似文献   

6.
1Introduction IntheendofAugust2005,HurricaneKatrina assaultedAtlanticcoastandcoastofGulfofMexico coastswithamaximumwindspeedof175m/h,a bout1200peoplewerekilledinthecatastrophic storm,NewOrleanswasseriouslydamagedbythe turbulenthurricanewindandtheassociate…  相似文献   

7.
The accurate prediction of the typhoon (hurricane) induced extreme sea environments is very important for the coastal structure design in areas influenced by typhoon (hurricane). In 2005 Hurricane Katrina brought a severe catastrophe in New Orleans by combined effects of hurricane induced extreme sea environments and upper flood of the Mississippi River. Like the New Orleans City, Shanghai is located at the estuarine area of the Changjiang River and the combined effect of typhoon induced extreme sea en- vironments, flood peak runoff from the Changjiang River coupled with the spring tide is the dominate factor for disaster prevention design criteria. The Poisson-nested logistic trivariate compound extreme value distribution (PNLTCEYD) is a new type of joint probability model which is proposed by compounding a discrete distribution (typhoon occurring frequency) into a continuous multivariate joint distribution ( typhoon induced extreme events). The new model gives more reasonable predicted results for New Orleans and Shanghai disaster prevention design criteria.  相似文献   

8.
The statistical distribution of the crest-to-trough heights of narrowband nonlinear sea waves is derived in a semi-closed form. A quantitative comparison of the resulting density and exceedance probability distributions with those of the linear theory is given. It is shown that the nonlinearity of waves, even with steepnesses typical of extreme sea states, has an insignificant influence on the distribution of crest-to-trough heights.  相似文献   

9.
The statistical distribution of the crest-to-trough heights of narrowband nonlinear sea waves is derived in a semi-closed form. A quantitative comparison of the resulting density and exceedance probability distributions with those of the linear theory is given. It is shown that the nonlinearity of waves, even with steepnesses typical of extreme sea states, has an insignificant influence on the distribution of crest-to-trough heights.  相似文献   

10.
Sea-level return periods are estimated at 18 sites around the English Channel using: (i) the annual maxima method; (ii) the r-largest method; (iii) the joint probability method; and (iv) the revised joint probability method. Tests are undertaken to determine how sensitive these four methods are to three factors which may significantly influence the results; (a) the treatment of the long-term trends in extreme sea level; (b) the relative magnitudes of the tidal and non-tidal components of sea level; and (c) the frequency, length and completeness of the available data. Results show that unless sea-level records with lengths of at least 50 years are used, the way in which the long-term trends is handled in the different methods can lead to significant differences in the estimated return levels. The direct methods (i.e. methods i and ii) underestimate the long (> 20 years) period return levels when the astronomical tidal variations of sea level (relative to a mean of zero) are about twice that of the non-tidal variations. The performance of each of the four methods is assessed using prediction errors (the difference between the return periods of the observed maximum level at each site and the corresponding data range). Finally, return periods, estimated using the four methods, are compared with estimates from the spatial revised joint probability method along the UK south coast and are found to be significantly larger at most sites along this coast, due to the comparatively short records originally used to calibrate the model in this area. The revised joint probability method is found to have the lowest prediction errors at most sites analysed and this method is recommended for application wherever possible. However, no method can compensate for poor data.  相似文献   

11.
The paper suggests modelling the long-term distribution of significant wave height with the Gamma, Beta of the first and second kind models. The three models are interrelated, flexible and cover the three different tail types of Extreme Value Theory. They can be used simultaneously as a means of assessing the uncertainty effects that result from choosing equally plausible models with different tail types. This procedure is intended for those applications that require the long-term distribution of significant wave height as input rather than the prediction of extreme values. The models are fitted to some significant wave data as an illustration. Details about maximum likelihood estimation are given in A.  相似文献   

12.
The joint surge-tide probability method for estimating the frequency of occurrence of extreme high sea levels is particularly useful when only a few years of sea level observations are available for the location of interest. The standard approach at present involves the convolution of the probability density functions of the tidal and surge elevations to obtain the distribution of total water level. An alternative approach is discussed here which is an adaptation of an existing, but different, method to render it suitable for application in many British and European locations. The two methods are applied to the major port of Portsmouth in Southern England and are critically compared.  相似文献   

13.
为了研究欧洲北海海域的波高全区域概率分布情况,从而为海洋平台等海洋浮式结构物的选址和结构设计提供依据。首先基于Global Waves Statistics(GWS)提供的实测数据,确定典型计算工况的发生概率;同时考虑实测数据中极端波浪环境下的数据缺失导致大波高分布概率偏小的问题,利用三参数Weibull分布确定不同重现期下的极值风速,作为典型计算工况的补充。以不同风速、风向的定常风场为输入项,利用第三代海浪数值模型SWAN模型,对北海全区域波高进行数值模拟。将数值模拟的稳态形式依照各工况的发生概率进行归一化累加处理,认为其结果可以表征全区域的波高概率分布情况。以波高概率分布的计算结果为依据,分析北海海域波浪环境的统计学特征,发现有效波高为7 m以上的大波高频发区在北海北部区域有大范围分布;有效波高4~5 m为北海东北区域的多发海况,极端海况下的有效波高主要分布于7~14 m区间,在地形突变区域的波高发生显著变化。  相似文献   

14.
Newly exposed concepts of POT declustering (Bernardara et al., 2014) within the GPD-Poisson model are applied to the joint probability of tide and surge for determining extreme sea levels, as a variation of the Revised Joint Probability Method (RJPM, Tawn and Vassie, 1989). A mixture model is proposed for the meteorological residual (surge) component with a non-parametric (empirical) density for the bulk values and parametric models for both the lower and upper tails. In particular, a distinction is made between values observed at regular time steps, called sequential values, and the clusters of extreme values, or events, on which the statistical extrapolations are performed. The sea level distribution is obtained by convolution of the tide and surge density functions. Confidence intervals are also proposed. This model is applied to the case study of Brest, France using both hourly and high water values. Two methods for handling tide–surge interaction are presented and discussed and a comparison with a direct approach is made.  相似文献   

15.
On the distribution of crest to trough wave heights   总被引:1,自引:0,他引:1  
In the present paper we derive the probability distribution function of crest to trough wave heights in a narrow-band, Gaussian stochastic process. It is shown that the distribution function is a one-parameter Rayleigh distribution where the parameter is expressed in terms of the correlation function of the given process. Comparison based on correlation values obtained via sea wave spectra indicate that the derived distribution function agrees well with observed data.  相似文献   

16.
A model for the depth-limited distribution of the highest wave in a sea state is presented. The distribution for the extreme wave height is based on a probability density function (pdf) for depth-limited wave height distribution for individual waves [Méndez, F.J., Losada, I.J., Medina, R. 2004. Transformation model of wave height distribution. Coastal Eng, Vol. 50, 97:115.] and considers the correlation between consecutive waves. The model is validated using field data showing a good representation of the extreme wave heights in the surf zone. Some important statistical wave heights are parameterized obtaining useful expressions that can be used in further calculations.  相似文献   

17.
《Applied Ocean Research》2007,29(1-2):1-16
Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is of great value in the design of these structures. Wave loading on slender members of bottom-supported jacket or jack-up structures is frequently calculated by Morison’s equation. Due to nonlinearity of the drag component of Morison wave loading and also due to intermittency of wave loading on members in the splash zone, the response is often non-Gaussian; therefore, simple techniques for derivation of their extreme response probability distribution are not available. Finite-memory nonlinear systems (FMNS) are extensively used in establishing a simple relationship between the output and input of complicated nonlinear systems. In this paper, it will be shown how the response of an offshore structure exposed to Morison wave loading can be approximated by the response of an equivalent finite-memory nonlinear system. The approximate models can then be used to determine the probability distribution of response extreme values with great efficiency. Part I of this paper is devoted to the development of an efficient FMNS model for offshore structural response while part II is devoted to the validation of the developed models.  相似文献   

18.
海面水位各种高度的出现频率在海洋工程和航运中具有重要意义。为了得出其分布,最直接和可靠的方法当然是利用长期实测资料进行统计。但是在需要获得水位分布的地点往往没有足够长期的资料,这时就必须采用其他的方法来推算。 我国近海引起水位升降的主要因素是天文潮,故利用潮汐调和常数推算天文潮并考虑到到非天文因素的水位变化是一个比较可靠的办法。这个方法比较准确,但需要进行潮汐预报,计算量比较大。本文提出的方法所涉及的计算量很小,但仍能获得较好的效果。这个方法的基本出发点是:由于不同地点海面水位分布有一定的共性,水位分布和它的数字特征之间有密切的关系,而数字特征又决定于潮汐调和常数及非天文水位标准差,因而可利用潮汐调和常数及非天文水位标准差求得数字特征,然后进一步得出水位分布。这个方法所用到的数字特征为标准差、偏度和峰度,它们汉语拼音的第一个字母分别为B,P和F,故这个方法被称为BPF 法。 1977年我们提出 BPF 法时,主要应用于海图深度基准面,应用中的有关问题将另文讨论。  相似文献   

19.
The floating production storage and offloading unit (FPSO) is an offshore vessel that produces and stores crude oil prior to tanker transport. Robust prediction of extreme hawser tensions during the FPSO offloading operation is an important safety concern. Excessive hawser tension may occur during certain sea conditions, posing an operational risk. In this paper, the finite element method (FEM) software ANSYS AQWA has been employed to analyze vessel response due to hydrodynamic wave loads, acting on a specific FPSO vessel under actual sea conditions.In some practical situations, it would be useful to improve the accuracy of some statistical predictions based on a certain stochastic random process, given another synchronous highly correlated stochastic process that has been measured for a longer time, than the process of interest. In this paper, the issue of improving extreme value prediction has been addressed. In other words, an efficient transfer of information is necessary between two synchronous, highly correlated stochastic processes. Two such highly correlated FPSO hawser tension processes were simulated in order to test the efficiency of the proposed technique.  相似文献   

20.
For many reasons, e.g., port operations, coastal construction planning, undersea structure survival, and underwater transport, man wishes to know the extreme values that are likely to occur in coastal oceanographic variables. This paper presents a hybrid statistics/ computer simulation method that uses archived oceanographic observations to estimate confidence levels on the most extreme values likely to occur over a given period in the future. The difference from previously developed methods is the ability to estimate the most extreme value over a time period for a given probability (as opposed to estimating the probability of exceeding a given value) and the ability to obtain results from empirical data without a great deal of theoretical oceanography. The method is applied to the California coast for a period of 100 years on the following variables: bottom surge particle velocity by water depth, wave height by water depth, wavelength by water depth, wave period, current velocity, regions of high density, regions of low density, and earthquake magnitude. Values are given for the 99- and 99.9-percent probability levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号