首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Using a high resolution regional climate model we perform multiple January simulations of the impact of land cover change over western Australia. We focus on the potential of reforestation to ameliorate the projected warming over western Australia under two emission scenarios (A2, B2) for 2050 and 2100. Our simulations include the structural and physiological responses of the biosphere to changes in climate and changes in carbon dioxide. We find that reforestation has the potential to reduce the warming caused by the enhanced greenhouse effect by as much as 30% under the A2 and B2 scenarios by 2050 but the cooling effect declines to 10% by 2100 as CO2-induced warming intensifies. The cooling effect of reforestation over western Australia is caused primarily by the increase in leaf area index that leads to a corresponding increase in the latent heat flux. This cooling effect is localized and there were no simulated changes in temperature over regions remote from land cover change. We also show that the more extreme emission scenario (A2) appears to lead to a more intense response in photosynthesis by 2100. Overall, our results are not encouraging in terms of the potential to offset future warming by large scale reforestation. However, at regional scales the impact of land cover change is reasonably large relative to the impact of increasing carbon dioxide (up to 2050) suggesting that future projections of the Australian climate would benefit from the inclusion of projections of future land cover change. We suggest that this would add realism and regional detail to future projections and perhaps aid detection and attribution studies.  相似文献   

2.
While ecosystem services and climate change are often examined independently, quantitative assessments integrating these fields are needed to inform future land management decisions. Using climate-informed state-and-transition simulations, we examined projected trends and tradeoffs for a suite of ecosystem services under four climate change scenarios and two management scenarios (active management emphasizing fuel treatments and no management other than fire suppression) in a fire-prone landscape of dry and moist mixed-conifer forests in central Oregon, USA. Focal ecosystem services included fire potential (regulating service), timber volume (provisioning service), and potential wildlife habitat (supporting service). Projections without climate change suggested active management in dry mixed-conifer forests would create more open forest structures, reduce crown fire potential, and maintain timber stocks, while in moist mixed-conifer forests, active management would reduce crown fire potential but at the expense of timber stocks. When climate change was considered, however, trends in most ecosystem services changed substantially, with large increases in wildfire area predominating broad-scale trends in outputs, regardless of management approach (e.g., strong declines in timber stocks and habitat for closed-forest wildlife species). Active management still had an influence under a changing climate, but as a moderator of the strong climate-driven trends rather than being a principal driver of ecosystem service outputs. These results suggest projections of future ecosystem services that do not consider climate change may result in unrealistic expectations of benefits.  相似文献   

3.
Under the threat of global warming it is important to determine the impact that future changes in climate may have on the environment and to what extent any adverse effects can be mitigated. In this study we assessed the impact that climate change scenarios may have on soil carbon stocks in Canada and examined the potential for agricultural management practices to improve or maintain soil quality. Historical weather data from 1951 to 2001 indicated that semi-arid soils in western Canada have become warmer and dryer and air temperatures have increased during the spring and winter months. Results from the Canadian Center for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model (CGCM1,2) under two climate change forcing scenarios also indicated that future temperatures would increase more in the spring and winter. Precipitation increased significantly under the IPCC IS92a scenario and agreed with historical trends in eastern Canada whereas the IPCC SRES B2 scenario indicated very little change in precipitation and better matched historical trends in western Canada. The Century model was used to examine the influence of climate change on agricultural soil carbon (C) stocks in Canada. Relative to simulations using historical weather data, model results under the SRES B2 climate scenario indicated that agricultural soils would lose 160 Tg of carbon by 2099 and under the IS92a scenario would lose 53 Tg C. Carbon was still lost from soils in humid climatic regions even though C inputs from crops increased by 10–13%. Carbon factors associated with changes in management practices were also estimated under both climate change scenarios. There was little difference in factors associated with conversion from conventional to no-till agriculture, while carbon factors associated with the conversion of annual crops to perennial grass were lower than for historical data in semi-arid soils because water stress hampered crop production but were higher in humid soils.  相似文献   

4.
We evaluated the potential effects of two climate change scenarios on salmonid habitats in the Yakima River by linking the outputs from a watershed model, a river operations model, a two-dimensional (2D) hydrodynamic model, and a geographic information system (GIS). The watershed model produced a discharge time series (hydrograph) in two study reaches under three climate scenarios: a baseline (1981–2005), a 1-°C increase in mean air temperature (plus one scenario), and a 2-°C increase (plus two scenario). A river operations model modified the discharge time series with Yakima River operational rules, a 2D model provided spatially explicit depth and velocity grids for two floodplain reaches, while an expert panel provided habitat criteria for four life stages of coho and fall Chinook salmon. We generated discharge-habitat functions for each salmonid life stage (e.g., spawning, rearing) in main stem and side channels, and habitat time series for baseline, plus one (P1) and plus two (P2) scenarios. The spatial and temporal patterns in salmonid habitats differed by reach, life stage, and climate scenario. Seventy-five percent of the 28 discharge-habitat responses exhibited a decrease in habitat quantity, with the P2 scenario producing the largest changes, followed by P1. Fry and spring/summer rearing habitats were the most sensitive to warming and flow modification for both species. Side channels generally produced more habitat than main stem and were more responsive to flow changes, demonstrating the importance of lateral connectivity in the floodplain. A discharge-habitat sensitivity analysis revealed that proactive management of regulated surface waters (i.e., increasing or decreasing flows) might lessen the impacts of climate change on salmonid habitats.  相似文献   

5.
We present results from detailed interviews with 12 leading climate scientists about the possible effects of global climate change on the Atlantic Meridional Overturning Circulation (AMOC). The elicitation sought to examine the range of opinions within the climatic research community about the physical processes that determine the current strength of the AMOC, its future evolution in a changing climate and the consequences of potential AMOC changes. Experts assign different relative importance to physical processes which determine the present-day strength of the AMOC as well as to forcing factors which determine its future evolution under climate change. Many processes and factors deemed important are assessed as poorly known and insufficiently represented in state-of-the-art climate models. All experts anticipate a weakening of the AMOC under scenarios of increase of greenhouse gas concentrations. Two experts expect a permanent collapse of the AMOC as the most likely response under a 4×CO2 scenario. Assuming a global mean temperature increase in the year 2100 of 4 K, eight experts assess the probability of triggering an AMOC collapse as significantly different from zero, three of them as larger than 40%. Elicited consequences of AMOC reduction include strong changes in temperature, precipitation distribution and sea level in the North Atlantic area. It is expected that an appropriately designed research program, with emphasis on long-term observations and coupled climate modeling, would contribute to substantially reduce uncertainty about the future evolution of the AMOC.  相似文献   

6.
黑龙江省未来41年气候变化趋势与突变分析   总被引:1,自引:0,他引:1  
选用由英国Hadley中心区域气候模式系统PRECIS构建的基准时段(1961—1990年)和未来时段(2010--2050年)A2、B2情景气候数据,应用线性倾向估算法、累积距平及Mann—Kendall法对排放情景特别报告(SRES)中A2和B2情景下黑龙江省2010--2050年的平均气温、平均最高最低气温、降水量的变化趋势和突变进行了分析。结果表明:相对于基准气候(1961--1990年),未来41a平均气温表现出明显的上升趋势,A2、B2情景下年均气温分别升高1.63℃和1.94℃,突变分别发生在2031年和2033年;相对于基准气候,A2、B2情景下未来41a降水量分别增加5.3%和1.1%,降水量变化趋势不同,A2情景下为4.03mm/10a,B2情景下为5.94mm/10a,但趋势均不显著,且没有突变发生。总体上,黑龙江省未来41a的气候为向暖湿变化的趋势。  相似文献   

7.
利用5个全球气候模式和中国东北地区162个站点地面温度实测资料,评估全球气候模式和多模式集合平均对中国东北地区地面温度的模拟能力,并对SRES B1、A1B和A2排放情景下,中国东北地区未来地面温度变化进行预估。结果表明:全球气候模式能够较好地再现了东北地区地面温度的年变化和空间分布特征,但存在系统性冷偏差,模式对夏季地面温度模拟偏低1.16 ℃,优于冬季。预估结果表明,3种排放情景下21世纪中期和末期东北地区地面温度均将升高,末期增幅高于中期,冬季增幅高于其他季节, SRES A2排放情景下增幅最大,B1排放情景下最小;增温幅度自南向北逐渐增大,增温最显著地区位于黑龙江小兴安岭;21世纪末期3种情景下中国东北地区年平均地面温度将分别升高2.39 ℃(SRES B1)、3.62 ℃(SRES A1B)和4.43 ℃(SRES A2)。  相似文献   

8.
This paper examines changes in rainfall effectiveness indices of the Awun basin in Nigeria during the late twenty-first century for agricultural applications with outputs from high-resolution regional climate model (RCM) simulations. The RCM simulations are driven by two global climate models for a reference period (1985–2004) and a future period (2080–2099) and for RCP4.5 (a scenario with some mitigation) and RCP8.5 (a business as usual scenario) forcings. Simulations are provided for the control (1985–2004) and scenario (2080–2099) periods. Observations from synoptic station are used for bias-correction. Three indices being local onset date, seasonality index (SI), and hydrologic ratio (HR) are analyzed. Onset and HR are tested with two evapotranspiration (ETp) models. Farmers’ perceptions are also collected to validate trends of rainfall indices for the present-day climate. We found that onset dates do not depend much on the ETp models used, and farmers’ perceptions are consistent with predicted rainfall patterns. Present-day climate trend shows an early onset. However, onset is projected to be late in future and the delay will be magnified under the business as usual scenario. Indeed, average onset date is found on the 5th May for present-day while in the future, a delay about 4 and 8 weeks is projected under RCP4.5 and RCP8.5 scenarios respectively. SI is between 0.80 and 0.99, and HR is less than 0.75 for all scenarios, meaning respectively that (i) the rainy season will get shorter and (ii) the area will get drier in the future compared to the present-day. Local stakeholders are forewarned to prepare for potential response strategies. A continuous provision of forecast-based rainfall indices to support farmer’s decision making is also recommended.  相似文献   

9.
Simulating the impacts of climate change on cotton production in India   总被引:1,自引:0,他引:1  
General circulation models (GCMs) project increases in the earth’s surface air temperatures and other climate changes by the mid or late 21st century, and therefore crops such as cotton (Gossypium spp L.) will be grown in a much different environment than today. To understand the implications of climate change on cotton production in India, cotton production to the different scenarios (A2, B2 and A1B) of future climate was simulated using the simulation model Infocrop-cotton. The GCM projections showed a nearly 3.95, 3.20 and 1.85 °C rise in mean temperature of cotton growing regions of India for the A2, B2 and A1B scenarios, respectively. Simulation results using the Infocrop-cotton model indicated that seed cotton yield declined by 477 kg?ha?1 for the A2 scenario and by 268 kg?ha?1 for the B2 scenario; while it was non-significant for the A1B scenario. However, it became non-significant under elevated [CO2] levels across all the scenarios. The yield decline was higher in the northern zone over the southern zone. The impact of climate change on rainfed cotton which covers more than 60 % of the country’s total cotton production area (mostly in the central zone) and is dependent on the monsoons is likely to be minimum, possibly on account of marginal increase in rainfall levels. Results of this assessment suggest that productivity in northern India may marginally decline; while in central and southern India, productivity may either remain the same or increase. At the national level, therefore, cotton production is unlikely to change with climate change. Adaptive measures such as changes in planting time and more responsive cultivars may further boost cotton production in India.  相似文献   

10.
气候变化对雨养冬小麦水分利用效率的影响估算   总被引:3,自引:2,他引:1       下载免费PDF全文
研究气候变化对雨养冬小麦水分利用效率的影响规律,可为农业适应气候变化提供科学依据。通过构建代表站雨养冬小麦产量和土壤水分变化量的模拟方程,分析水分利用效率的历史变化,并结合两种区域气候模式PRECIS和REGCM4.0输出的4种不同气候变化情景资料,估算未来2021—2050年雨养冬小麦水分利用效率的可能变化。结果表明:1981—2010年甘肃、山西和河南代表站的雨养冬小麦水分利用效率呈二次曲线变化趋势,最大值出现在2003年前后。4种气候变化情景的模拟结果均显示:2021—2050年冬小麦全生育期耗水量明显增加,各代表站不同情景平均增加6.2%;产量有增有减,平均产量变化率为1.4%;水分利用效率平均减小3.8%,且变率减小。区域气候模式PRECIS估算的水分利用效率的减小量A2情景大于B2情景,REGCM4.0模式估算的水分利用效率的减小量RCP8.5情景大于RCP4.5情景。整体来看,RCP气候情景对雨养冬小麦水分利用效率的负面影响更大。  相似文献   

11.
We present an analysis of climate change over southern South America as simulated by a regional climate model. The regional model MM5 was nested within time-slice global atmospheric model experiments conducted by the HadAM3H model. The simulations cover a 10-year period representing present-day climate (1981–1990) and two future scenarios for the SRESA2 and B2 emission scenarios for the period 2081–2090. There are a few quantitative differences between the two regional scenarios. The simulated changes are larger for the A2 than the B2 scenario, although with few qualitative differences. For the two regional scenarios, the warming in southern Brazil, Paraguay, Bolivia and northeastern Argentina is particularly large in spring. Over the western coast of South America both scenarios project a general decrease in precipitation. Both the A2 and B2 simulations show a general increase in precipitation in northern and central Argentina especially in summer and fall and a general decrease in precipitation in winter and spring. In fall the simulations agree on a general decrease in precipitation in southern Brazil. This reflects changes in the atmospheric circulation during winter and spring. Changes in mean sea level pressure show a cell of increasing pressure centered somewhere in the southern Atlantic Ocean and southern Pacific Ocean, mainly during summer and fall in the Atlantic and in spring in the Pacific. In relation to the pressure distribution in the control run, this indicates a southward extension of the summer mean Atlantic and Pacific subtropical highs.  相似文献   

12.
Climate change and biological invasions are major causes of biodiversity loss and may also have synergistic effects, such as range shifts of invaders due to changing climate. Bioclimatic models provide an important tool to assess how the threat of invasive species may change with altered temperature and precipitation regimes. In this study, potential distributions of three recently naturalised plant species in New Zealand are modelled (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla), using four different general circulation models (CCCMA-CGCM3, CSIRO-Mk3.0, GFDL-CM2.0 and UKMO-HADCM3) with two emission scenarios (A2 and B1) each. Based on a maximum entropy approach, models were trained on global data using a small set of uncorrelated predictors. The models were projected to the country of interest, using climate models that had been statistically downscaled to New Zealand, in order to obtain high resolution predictions. This study provides evidence of the potential range expansion of these species, with potentially suitable habitat increasing by as much as 169 % (A. cunninghamiana; with up to 115,805 km2 of suitable habitat), 133 % (P. guajava; 164,450 km2) and 208 % (S. actinophylla; 31,257 km2) by the end of the century compared to the currently suitable habitat. The results show that while predictions vary depending on the chosen climate scenario, there is remarkable consistency amongst most climate models within the same emission scenario, with overlaps in areas of predicted presence ranging between 81 % and 99.5 % (excluding CSIRO-Mk3.0). By having a better understanding of how climate change will affect distribution of invasive plants, appropriate management measures can be taken.  相似文献   

13.
This study aims to demonstrate the potential of a process-based regional ecosystem model, LPJ-GUESS, driven by climate scenarios generated by a regional climate model system (RCM) to generate predictions useful for assessing effects of climatic and CO2 change on the key ecosystem services of carbon uptake and storage. Scenarios compatible with the A2 and B2 greenhouse gas emission scenarios of the Special Report on Emission Scenarios (SRES) and with boundary conditions from two general circulation models (GCMs) – HadAM3H and ECHAM4/OPYC3 – were used in simulations to explore changes in tree species distributions, vegetation structure, productivity and ecosystem carbon stocks for the late 21st Century, thus accommodating a proportion of the GCM-based and emissions-based uncertainty in future climate development. The simulations represented in this study were of the potential natural vegetation ignoring direct anthropogenic effects. Results suggest that shifts in climatic zones may lead to changes in species distribution and community composition among seven major tree species of natural Swedish forests. All four climate scenarios were associated with an extension of the boreal forest treeline with respect to altitude and latitude. In the boreal and boreo-nemoral zones, the dominance of Norway spruce and to a lesser extent Scots pine was reduced in favour of deciduous broadleaved tree species. The model also predicted substantial increases in vegetation net primary productivity (NPP), especially in central Sweden. Expansion of forest cover and increased local biomass enhanced the net carbon sink over central and northern Sweden, despite increased carbon release through decomposition processes in the soil. In southern Sweden, reduced growing season soil moisture levels counterbalanced the positive effects of a longer growing season and increased carbon supply on NPP, with the result that many areas were converted from a sink to a source of carbon by the late 21st century. The economy-oriented A2 emission scenario would lead to higher NPP and stronger carbon sinks according to the simulations than the environment-oriented B2 scenario.  相似文献   

14.
We report on simulations of present-day climate (1961–1990) and future climate conditions (2071–2100, Special Report on Emissions Scenario A2) over the Caspian sea basin with a regional climate model (RCM) nested in time-slice general circulation model (GCM) simulations. We also calculate changes (A2 scenario minus present-day) in Caspian sea level (CSL) in response to changes in the simulated hydrologic budget of the basin. For the present-day run, both the GCM and RCM show a good performance in reproducing the water budget of the basin and the magnitude of multi-decadal changes in CSL. Compared to present-day climate, in the A2 scenario experiment we find an increase in cold season precipitation and an increase in temperature and evaporation, both over land and over the Caspian sea. We also find a large decrease of CSL in the A2 scenario run compared to the present-day run. This is due to increased evaporation loss from the basin (particularly over the sea) exceeding increased cold season precipitation over the basin. Our results suggest that the CSL might undergo large changes under future climate change, leading to potentially devastating consequences for the economy and environment of the region.  相似文献   

15.
In this study, a zonally-averaged statistical climate model (SDM) is used to investigate the impact of global warming on the distribution of the geobotanic zones over the globe. The model includes a parameterization of the biogeophysical feedback mechanism that links the state of surface to the atmosphere (a bidirectional interaction between vegetation and climate). In the control experiment (simulation of the present-day climate) the geobotanic state is well simulated by the model, so that the distribution of the geobotanic zones over the globe shows a very good agreement with the observed ones. The impact of global warming on the distribution of the geobotanic zones is investigated considering the increase of CO2 concentration for the B1, A2 and A1FI scenarios. The results showed that the geobotanic zones over the entire earth can be modified in future due to global warming. Expansion of subtropical desert and semi-desert zones in the Northern and Southern Hemispheres, retreat of glaciers and sea-ice, with the Arctic region being particularly affected and a reduction of the tropical rainforest and boreal forest can occur due to the increase of the greenhouse gases concentration. The effects were more pronounced in the A1FI and A2 scenarios compared with the B1 scenario. The SDM results confirm IPCC AR4 projections of future climate and are consistent with simulations of more complex GCMs, reinforcing the necessity of the mitigation of climate change associated to global warming.  相似文献   

16.
A gap-typed forest dynamic model KOPIDE was used to assess the dynamic responses of a mixed broadleaved-Korean pine forest stand to climate change in northeastern China. The GFDL climate change scenario was applied to derive the changes in environmental variables, such as 10 °C based DEGD and PET/P, which were used to implement the model. The simulation result suggests that the climate change would cause important changes in stand structure. Korean pine, the dominant species in the area under current climate conditions, would disappear under the GFDL equilibrium scenario. Oak and elm would become the dominant species replacing Korean pine, ash and basswood. Such a potential change in forest structure would require different strategies for forest management in northeastern China.  相似文献   

17.
Maconellicoccus hirsutus (Green) (Hemiptera:Pseudoccidae) is an important pest in many countries being responsible for considerable economic loses. Although it is not currently present in Chile, the chance that it could be accidentally introduced rises with the list of infested countries increasing over the last years. In addition, climate change projections indicate that a larger region would fit as potential habitat for this pest, allowing it to persist over time and colonize a larger proportion of the Chilean territory. In this study the geographic distribution and the number of generations this mealybug would develop in Chile were determined, under current temperatures and under two projected climatic scenarios. Cumulative degree days were calculated for current and future scenarios using a lower temperature threshold of 14.5 °C, with 624.5 degree-days as the thermal requirement for the species to complete one generation. The results show that under current climate conditions M. hirsutus could develop up to three generations in the north of the country (i.e. 18° South) and one generation in the region near 37° South. Under future scenarios’ conditions the pest could develop up to five generations in the north, and one generation around the 42° South. Present climate conditions in Chile would allow the establishment of the pink hibiscus mealybug, if the pest enters the country. Climate change conditions would allow the potentially invaded area to expand south, and would promote the development of more generations per year of the mealybug in the studied territory.  相似文献   

18.
未来气候变化对东北玉米品种布局的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
为探求未来气候变化对我国东北玉米品种布局的影响,基于玉米生产潜力和气候资源利用率,结合区域气候模式输出的2011—2099年RCP_4.5,RCP_8.5两种气候背景气象资料和1961—2010年我国东北地区91个气象站的观测数据,分析了未来气候变化情况下,东北玉米品种布局、生产潜力、气候资源利用率的时空变化。结果表明:未来东北地区玉米可种植边界北移东扩,南部为晚熟品种,新扩展区域以早熟品种为主,不能种植区域减少。未来玉米生产潜力为南高北低,增加速率均高于历史情景,水分适宜度最低,而历史情景下温度是胁迫玉米生产的关键因子。未来东北玉米对气候资源利用率整体下降,其中RCP8.5情景利用率最低。  相似文献   

19.
This paper characterizes potential hydrological impact of future climate in the Bagmati River Basin, Nepal. For this research, basinwide future hydrology is simulated by using downscaled temperature and precipitation outputs from the Hadley Centre Coupled Model, version 3 (HadCM3), and the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS). It is predicted that temperature may rise maximally during the summer rather than winter for both A2 and B2 Special Report on Emissions Scenarios (SRES) scenarios. Precipitation may increase during the wet season, but it may decrease during other seasons for A2 scenario. For B2 scenario, precipitation may increase during all the seasons. Under the A2 scenario, premonsoon water availability may decrease more in the upper than the middle basin. During monsoons, both upper and middle basins show increased water availability. During the postmonsoon season, water availability may decrease in the upper part, while the middle part shows a mixed trend. Under the B2 scenario, water availability is expected to increase in the entire basin. The analysis of the projected hydrologic impact of climate change is expected to support informed decision-making for sustainable water management.  相似文献   

20.
基于政府间气候变化委员会(IPCC)排放情景特别报告(SRES)A2和B2温室气体排放方案下全球海气耦合模式模拟结果,分析了未来半个世纪中国江淮流域夏季降水变化趋势,发现江淮流域在经历21世纪开始10年降水偏多时期后,从2010年开始该地区将经历一段降水偏少的时期,在温室气体和SO2排放量较多的A2方案下,该时期将维持较长时间.这些地区夏季降水的减少与夏季西北太平洋副热带高压环流的减弱东撤有关,由此伴随这些地区夏季风和对流层中大气上升运动的减弱,而西北太平洋副热带高压环流的减弱东撤与北太平洋海表面南高北低的温度梯度的减小有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号