首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model. The effect of pore air pressure on rainfall infiltration has been widely recognized and validated by means of numerical simulations and laboratory experiments. However, whether a slope can actually seal pore air continues to be debated by researchers. In this study, a water-air two-phase flow model is used to simulate the rainfall infiltration process on a soil slope, and a field experiment is conducted to realistically test the sealing conditions of a slope. According to the numerical simulation, the areas of water and air flow in and out on the slope surface are relatively stable and can be classified as the "inhalation zone" and "overflow zone", respectively. Intermittent rainfall on the soil slope has an amplifying effect on pore air pressure because rainfall intensity is usually at the millimeter level, and it causes pore air pressure to reach the cm level. A field experiment was performed to determine whether a slope can realistically seal pore air and subsequently verify the regularity of rainfall infiltration. Air pressure sensors were buried in the slope to monitor the pore air pressures during the rainfall process. The monitoring results show that the pore air pressure in the slope changed, which indicates that the slope can seal air. Moreover, the amplification effects of intermittent rainfall on pore air pressure were observed for natural rainfall, which agrees well with the numerical simulation results.  相似文献   

2.
以黄冈地区青石镇政府后山堆积层滑坡为例,在分析了其工程地质特征及地质结构特征的基础上,采用有限元法研究了非饱和土瞬态体积含水量及孔隙水压力的分布,采用考虑孔隙水压力的Janbu法分析计算了降雨对堆积层滑坡安全系数的影响。研究结果表明:①降雨入渗导致坡体孔隙水压力升高,滑面抗剪强度降低,安全系数也随之逐渐降低,其中在降雨前期,两侧的抗剪强度下降速率比中部快,而到了后期中部的抗剪强度下降速率明显快于两侧;②安全系数变化表现为前19 d以0.008/d的速率缓慢下降,19~30 d以0.03/d的速率缓慢下降,30 d以后下降速度降低,至36 d之后不再发生变化,其中在0~11 d两侧抗剪强度变化对滑坡整体稳定性变化的贡献比中部大,19~36 d中部抗剪强度变化对滑坡整体稳定性变化的贡献要比两侧大;③降雨入渗过程中,地下水从坡体表层和两侧流向坡体中部,负孔压区面积向中部不断压缩,中部地下水变化受到两侧及上层的制约,体积含水量及孔隙水压力变化相对滞后;④该滑坡的防治重点是做好降雨前期坡体后缘地下水截流以及前缘地下水排泄工作,同时,做好地表排水,减少降雨入渗。   相似文献   

3.
建立小寨滑坡水文地质模型,模拟其在不同降雨条件下的渗流场分布及稳定性变化。结果表明,该类型滑坡的失稳演化过程主要分为上覆Q4el+dl堆积阶段、接触带泥岩富水风化阶段和风化带富水软化阶段,风化带富水软化程度与滑体的高渗透性和滑床的隔水特性密切相关,是滑坡失稳破坏的决定性因素;滑坡的发生是因地表降雨下渗受阻,在上覆堆积层及下伏泥岩层间形成富水带,富水加速泥岩风化,并在坡体内形成强风化泥岩软弱层,随地质过程持续,泥岩强风化层逐渐加厚形成软弱带,在极端暴雨气候条件下,软弱带发生蠕变,地表开裂,滑坡形成。  相似文献   

4.
玄武岩台地型滑坡是一种特殊的滑坡类型,此前对其稳定性的研究较少。以嵊州市地雅园滑坡为研究对象,采用三维数值模拟的方法进行了稳定性分析评价,首先基于详细的地质资料采用三维模拟软件进行了建模;然后基于P-Ⅲ型分布曲线确定了降雨重现期,分别采用岩土软件MIDAS进行了滑坡稳定性模拟与三维运动模拟平台DAN3D软件进行了滑坡影响范围计算;最后对影响地雅园滑坡稳定性的因子进行了敏感性分析。结果表明:不同降雨强度对地雅园滑坡稳定性的影响不同,最不利工况为百年一遇降雨工况,此时滑坡稳定性系数为0.946,破坏概率为65.25%,影响范围最大增加了36.83%;内摩擦角和降雨是影响地雅园滑坡稳定性的主要因子。分析原因认为玄武岩台地型滑坡稳定性主要与硅藻土滑带、节理裂隙面的发育情况、降雨入渗滞后性有明显的相关性。本研究成果可为同类滑坡稳定性评价提供参考依据。   相似文献   

5.
A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocking of the channel may lead to a series of magnified secondary hazards. For this reason it is important to investigate the potential response of this type of landslide to rainfall. In the present paper, the Goulingping landslide, one of the colluvial landslides in the Goulingping valley in the middle of the Bailong River catchment in Gansu Province, China, was chosen for the study. Electrical Resistivity Tomography (ERT), Terrestrial Laser Scanning (TLS), together with traditional monitoring methods, were used to monitor changes in water content and the deformation of the landslide caused by rainfall. ERT was used to detect changes in soil water content induced by rainfall. The most significant findings were as follows:(1) the water content in the centralupper part (0~41 m) of the landslide was greater than in the central-front part (41~84 m) and (2) there was a relatively high resistivity zone at depth within the sliding zone. The deformation characteristics at the surface of the landslide were monitored by TLS and the results revealed that rainstorms caused three types of deformation and failure: (1) gully erosion at the slope surface; (2) shallow sliding failure; (3) and slope foot erosion. Subsequent monitoring of continuous changes in pore-water pressure, soil pressure and displacement (using traditional methods) indicated that long duration light rainfall (average 2.22 mm/d) caused the entire landslide to enter a state of creeping deformation at the beginning of the rainy season. Shear-induced dilation occurred for the fast sliding (30.09 mm/d) during the critical failure sub-phase (EF). Pore-water pressure in the sliding zone was affected by rainfall. In addition, the sliding L1 parts of the landslide exerted a discontinuous pressure on the L2 part. Through the monitoring and analysis, we conclude that this kind of landslide may have large deformation at the beginning and the late of the rainy season.  相似文献   

6.
Long-term kinematic research of slowmoving debris slide is rare despite of the widespread global distribution of this kind. This paper presents a study of the kinematics and mechanism of the Jinpingzi debris slide located on the Jinsha river bank in southwest China. This debris slide is known to have a volume of 27×106 m3 in active state for at least one century. Field survey and geotechnical investigation were carried out to define the structure of the landslide. The physical and mechanical properties of the landslide materials were obtained by in-situ and laboratory tests. Additionally, surface and subsurface displacements, as well as groundwater level fluctuations, were monitored since 2005. Movement features, especially the response of the landslide movement to rainfall, were analysed. Relationships between resisting forces and driving forces were analysed by using the limit equilibrium method assuming rigid-plastic frictional slip. The results confirmed a viscous component in the long-termcontinuous movement resulting in the quasioverconsolidated state of the slip zone with higher strength parameters than some other types of slowmoving landslides. Both surface and subsurface displacements showed an advancing pattern by the straight outwardly inclined(rather than gently or reversely inclined) slip zone, which resulted in low resistance to the entire sliding mass. The average surface displacement rate from 2005 to 2016 was estimated to be 0.19~0.87 mm/d. Basal sliding on the silty clay seam accounted for most of the deformation with different degrees of internal deformation in different parts. Rainfall was the predominant factor affecting the kinematics of Jinpingzi landslide while the role of groundwater level, though positive, was not significant. The response of the groundwater level to rainfall infiltration was not apparent. Unlike some shallow slow-moving earth flows or mudslides, whose behaviors are directly related to the phreatic groundwater level, the mechanism for Jinpingzi landslide kinematics is more likely related to the changing weight of the sliding mass and thedownslope seepage pressure in the shallow soil mass resulting from rainfall events.  相似文献   

7.
库岸滑坡受到库水升降作用影响, 内部渗透压力会产生周期性的变化。动态渗透压力会导致滑带结构与强度产生劣化, 进而影响滑坡整体稳定性。为揭示滑带在渗透作用下的结构演变特征, 通过室内渗流试验结合CT扫描技术获取了黄土坡滑坡滑带在不同渗流条件下的细观结构特征, 采用Avizo软件量化滑带细观结构参数, 定量分析了不同渗透条件下滑带结构的演变规律。结果表明, 滑带的渗透系数随渗流时长的增加而呈指数形式下降, 且水力梯度越大最终试样的渗透系数越小; 连续的CT重构图像显示渗流过程中部分黏土团聚体发生解体, 大孔隙被附近的细颗粒逐渐充填, 试样结构的宏观均一性增强; 统计数据表明滑带土的表观孔隙率由5%下降到了1%, 等效直径小于80 μm的孔隙占比随渗流时长的增加而增多, 而等效直径大于80 μm的孔隙占比随渗流时长的增加而减少。结果证明周期性渗透作用会影响滑带内孔隙结构的分布特征, 细观上表现为大孔隙被小颗粒充填, 导致渗流通道变得细长而弯曲, 孔隙的有效连通性被削弱, 宏观上表现为渗透系数随渗流时长的增加而降低。   相似文献   

8.
Dynamic assessment of rainfall-induced shallow landslide hazard   总被引:1,自引:1,他引:0  
The assessment of rainfall-induced shallow landslide hazards is a significant issue in the Three Gorges Reservoir area in China due to the rapid development of land in the past two decades. In this study, a probabilistic analysis method that combines TRIGRS and the point-estimate method for evaluating the hazards of shallow landslides have been proposed under the condition of rainfall over a large area. TRIGRS provides the transient infiltration model to analyze the pore water pressure during a rainfall. The point-estimate method is used to analyze the uncertainty of the soil parameters, which is performed in the geographic information system (GIS). In this paper, we use this method to evaluate the hazards of shallow landslides in Badong County, Three Gorges Reservoir, under two different types of rainfall intensity, and the results are compared with the field investigation. The results showed that the distribution of the hazard map is consistent with the observed landslides. To some extent, the distribution of the hazard map reflects the spatial and temporal distribution of the shallow landslide caused by rainfall.  相似文献   

9.
在多级滑坡的渐进破坏过程中, 滑带不同部位的屈服程度和破坏模式不同, 强度参数也不同。在强降雨条件下, 坡表产生的张拉裂缝充水, 会产生静水压力。当前广泛应用的传递系数法对滑带不同位置取同一强度参数, 也尚未考虑到静水压力作用。为此提出了一种考虑静水压力作用和滑带不同部位强度参数差异的改进传递系数法, 对降雨引起的西安市柳西村南部的牛角沟滑坡进行了计算。结果表明: 与不考虑静水压力和滑带不同部位强度参数差异的计算方法比, 改进传递系数法计算的抗滑力相对较小, 剩余下滑力计算结果相对较大, 各级滑坡稳定性系数分别减小了约33.26%、17.92%、24.95和16.94%;而改进前的稳定性系数偏高, 可能会导致支挡工程的安全储备不足。本研究提出的改进传递系数法可为多级滑坡处置提供更安全的参考。   相似文献   

10.
本文以Biot的固结理论为基础,利用有限单元法,对水布垭水库未来蓄水后地壳岩石中由于附加水荷载所产生的各种力学效应进行了数值计算。计算中沿清江从招徕河到恩施之间共取剖面48个。认为:(1)水体荷载产生的附加应力场、孔压场和形变场在库岸附近造成压应力差和位移差,特别是分布有附加的张应力,促使库水向外渗透和扩散,导致孔压改变、有效应力降低或增大;(2)水布垭库坝区的张性断裂和喀斯特较发育的地段,由于水体荷载效应和库水的渗透及扩散作用,易沟通地下水的动力联系,使岩体失稳并在浅层易产生倾斜型或倾斜型兼走滑型滑动;(3)孔压和位移一般在库基下几公里深度区域内多形成一个高值孔压和低值位移的变换带,是应力易于集中的场所;(4)水荷载产生的各种附加效应,受蓄水方式和蓄水时间的影响。  相似文献   

11.
Shallow slope failures induced by rainfall infiltration occur frequently, and the relevant triggering mechanisms have been widely studied.Rainfall-induced landslides are widely recognized to be caused by increases in soil weight, seepage force and pore water pressure or decreases in soil mechanical properties. However, even when all these factors are considered, some landslides still cannot be explained well. The increased pore water pressure in a slope reduces the effective stress of the soil and may trigger slope failure. Similarly, the pore gas pressure in a slope also reduces the effective stress of the soil but has been neglected in previous studies. As the viscosity of air is nearly negligible when compared with that of water, the pore gas pressure spreads faster, and its influence is wider, which is harmful for the stability of the slope. In this paper, the effects of pore gas pressure are considered in a shallow slope stability analysis, and a self-designed experiment is conducted to validate the force transfer mechanism.Numerical simulation results show that the pore gas pressure in the slope increases sharply at different locations under heavy rainfall conditions and that the pore gas pressure causes a rapid decrease in the slope safety factor. Laboratory experimental results show that the pore gas pressure throughout the whole unsaturated zone has the same value, which indicates that the gas pressure could spread quickly to the whole sample.  相似文献   

12.
The Wulipo landslide, triggered by heavy rainfall on July 10, 2013, transformed into debris flow,resulted in the destruction of 12 houses, 44 deaths, and 117 missing. Our systematic investigation has led to the following results and to a new understanding about the formation and evolution process of this hazard. The fundamental factors of the formation of the landslide are a high-steep free surface at the front of the slide mass and the sandstone-mudstone mixed stratum structure of the slope. The inducing factor of the landslide is hydrostatic and hydrodynamic pressure change caused by heavy continuous rainfall. The geological mechanical model of the landslide can be summarized as "instability-translational slide-tension fracture-collapse" and the formation mechanism as "translational landslide induced by heavy rainfall". The total volume of the landslide is 124.6×104 m3, and 16.3% of the sliding mass was dropped down from the cliff and transformed into debris flow during the sliding process, which enlarged 46.7% of the original sliding deposit area. The final accumulation area is found to be 9.2×104 m2. The hazard is a typical example of a disaster chain involving landslide and its induced debris flow. The concealment and disaster chain effect is the main reason for the heavy damage. In future risk assessment, it is suggested to enhance the research onpotential landslide identification for weakly intercalated slopes. By considering the influence of the behaviors of landslide-induced debris flow, the disaster area could be determined more reasonably.  相似文献   

13.
In this paper, the motion and acceleration process, as well as the mechanism of a high speed and long run landslide are investigated by adopting high speed ring shear test and taking the landslide occurred at Yigong River in Bomi, Tibet on April 9, 2000 as the background. According to the motion characteristics of high-speed and long distance motion landside, the mechanism is studied under different conditions such as shear speed, consolidated drained and consolidated undrained status. Results show that high speed shearing process hinders and delays the dissipation of pore pressure, and drives pore water migrating to shear zone slowly. Both of water content and fine particle content at shear zone are obviously higher than those in other layers; and soil liquefaction occurs at shear zone in the saturated consolidated undrained ring shear tests. The effective internal friction angle of the consolidated undrained soil is much lower than that of the consolidated drained soil under ring shearing. The results also indicate that the shearing speed affecting the strength of soil to some extent. The higher the ring shearing speed is, the lower the strength of soil is. This investigation provides a preliminary interpretation of the mechanism of the motion and acceleration process of the Yigong landslide, occurred in Tibet in 2000.  相似文献   

14.
The triggering mechanisms of debris flows were explored in the field using artificial rainfall experiments in two gullies, Dawazi Gully and Aizi Gully, in Yunnan and Sichuan Provinces, China, respectively. The soils at both sites are bare, loose and cohesive gravel-dominated. The results of a direct shear test, rheological test and back-analysis using soil mass stability calculations indicate that the mechanisms responsible for triggering debris flows involved the decreases in static and dynamic resistance of the soil. The triggering processes can be divided into 7 stages: rainfall infiltration, generation of excess runoff, high pore water pressure, surface erosion, soil creep, soil slipping, debris flow triggering and debris flow increment. In addition, two critical steps are evident: (i) During the process of the soil mass changing from a static to a mobile state, its cohesion decreased sharply (e.g., the cohesion of the soil mass in Dawazi Gully decreased from 0.520 to 0.090 kPa, a decrease of 83%). This would have reduced the soil strength and the kinetic energy during slipping, eventually triggered the debris flow. (ii) When the soil mass began to slip, the velocity and the volume increment of the debris flow fluctuated as a result of the interaction of soil resistance and the sliding force. The displaced soil mass from the source area of the slope resulted in the deposition of a volume of soil more than 7 - 8 times greater than that in the source area.  相似文献   

15.
The Heifangtai platform in Northwest China is famous for irrigation-induced loess landslides. This study conducted a centrifuge model test with reference to an irrigation-induced loess landslide that occurred in Heifangtai in 2011. The loess slope model was constructed by whittling a cubic loess block obtaining from the landslide site. The irrigation water was simulated by applying continuous infiltration from back of the slope. The deformation, earth pressure, and pore pressure were investigated during test by a series of transducers. For this particular study, the results showed that the failure processes were characterized by retrogressive landslides and cracks. The time dependent reductions of cohesion and internal friction angle at basal layer with increasing pore-water pressure were responsible for these failures. The foot part of slope is very important for slope instability and hazard prevention in the study area, where concentration of earth pressure and generation of high pore-water pressures would form before failures. The measurements of earth pressure and pore-water pressure might be effective for early warning in the study area.  相似文献   

16.
研究库水位波动和降雨影响下滑坡的位移变形特征并分析其破坏机制,对了解三峡库区滑坡的演化过程具有重要意义。以奉节曾家棚滑坡为例,基于GPS地表监测位移分析了滑坡在不同特征库水位运行阶段的变化规律,结合灰色关联度模型确定了滑坡不同部位的变形在不同阶段的主要控制因素,借助GEO-Studio软件模拟了曾家棚滑坡在历史降雨和库水位波动耦合作用下的稳定性变化,并与定量分析结果进行了交叉检验。结果表明:曾家棚滑坡的运动状态随时间变化,从缓慢蠕变状态进入阶跃变形状态。平面上,中东部坡体与西部坡体相比,运动更加强烈;剖面上,前缘变形早且变形量大。曾家棚滑坡变形失稳过程为初期蓄水启动了曾家棚古滑坡,前缘首先发生变形;降雨作为中后期主控因素,和库水位波动联合作用共同诱发了滑坡多次阶跃变形,使滑坡前中后部形成贯通裂缝;最终由二十年一遇的暴雨诱发滑坡发生整体破坏。   相似文献   

17.
The landslide hazards occurring in the complex geological genesis accumulation body are usually controlled by the coupling action of many internal and external factors. Therefore, this paper takes the dam-front Danbo accumulation body landslide of Yangfanggou hydropower station on the Yalong River as the geological prototype, and discusses the process and mechanism of slope stability degradation under the combined action of rainfall and slope construction. Based on the detailed understanding of the basic characteristics of the accumulation body, the development characteristics of the landslide and the construction situation of the slope engineering, the study conducted correlation analysis between rainfall and landslide displacement, the physical and mechanical tests of all types of rocksoil masses, and the numerical simulation testing of seepage field variation of the landslide section. It is found that the special slope structure and material composition of the old landslide accumulation layer on the upper part of the Danbo accumulation body are the internal factors for the occurrence of thrust loadinduced landslide, and the construction of the slope engineering not only creates free space conditions for sliding, but also provides channels for the infiltration of rainfall into the slope after confluence, which is an external factor that caused the mechanical properties of the sliding zone soil to gradually weaken from the trailing edge to the leading edge. The geomechanical model of such landslide is that the active section of the trailing edge produces the "source of force", the transition section of the middle section affects the occurrence of sliding, and the anti-sliding section of the leading edge controls the occurrence of landslide hazards. The results of this research provide not only a useful supplement to the theory of landslide formation mechanisms but also a scientific basis for guiding the prevention and control of similar hazards.  相似文献   

18.
Debris flows often occur in landslide deposits during heavy rainstorms. Debris flows are initiated by surface water runoff and unsaturated seepage under rainfall conditions. A physical model based on an infinitely long, uniform and void-rich sediment layer was applied to analyze the triggering of debris-flow introduced in landslide deposits. To determine the initiation condition for rainfall-induced debris flows, we conducted a surface water runoff and saturated-unsaturated seepage numerical program to model rainfall infiltration and runoff on a slope. This program was combined with physical modeling and stability analysis to make certain the initiation condition for rainfall-introduced debris flows. Taking the landslide deposits at Wenjiagou gully as an example, the initiation conditions for debris flow were computed. The results show that increase height of surface-water runoff and the decrease of saturated sediment shear strength of are the main reasons for triggering debris-flows under heavy rainfall conditions. The debris-flow triggering is affected by the depth of surface-water runoff, the slope saturation and shear strength of the sediment.  相似文献   

19.
A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.  相似文献   

20.
强对流或台风等极端天气下乔木坡地发生浅层滑坡灾害往往是暴雨和强风共同作用的结果。以皖南山区一处暴雨型浅层滑坡——畈章组滑坡为例, 通过现场调查和气象资料的分析表明, 除暴雨外风荷载也有可能促进滑坡的启动。为揭示该滑坡启动与破坏后这一完整运动过程的演化机制, 首先基于无限斜坡模型分析了实际降雨条件下的滑坡稳定性, 然后对取自于滑坡体内乔木根系周围和滑动面附近的两种土样利用DPRI型环剪仪, 分别开展了不排水循环剪切试验和自然排水残余剪切试验。结果表明: ①降雨入渗引起滑动面孔隙水压力的上升, 并导致稳定性的降低是畈章组滑坡启动的直接原因; ②乔木根系周围的饱和土在风振作用产生的动剪切荷载下易形成高的超孔隙水压力, 并导致浅表层的局部失稳滑动, 增加了畈章组滑坡整体破坏的可能性; ③滑动面土体的残余强度具有强烈的"正速率效应", 从而控制了畈章组滑坡启动后不会表现出高速远程的运动特征, 与现场调查结论一致。研究结果可以为暴雨协同风振作用下富乔木坡地浅层滑坡的预警预报研究提供参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号