首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The features of water vapor transport, such as temporal evolution, vertical structure and spatial pattern, over North China during the prolonged drought in the summer of 1980 have been analyzed through computation of water vapor flux based on the once daily ECMWF grid-point data at 12GMT. The results indicate that it is unlikely that the characteristics of the atmospheric mass divergence, ascending motion and stratification stability in North China were completely opposite to those in the Yangtze River Valley, where the heavy flood occurred in the summer of 1980. It is major differences that the strong ascending motion and significant water vapor convergence overlap fairly well each other in the vertical levels in the Yangtze River Valley, while the maximum ascending motion is accompanied by water vapor divergence or weak water vapor convergence in North China. This vertical structure in North China results in insufficient water vapor supply and, therefore, little condensation and precipitation in the m  相似文献   

2.
The diurnal cycles of precipitation over north China during summer in four strong rainfall years are examined using two-dimensional cloud-resolving modeling data. The diurnal signals are analyzed in terms of precipitation budget, fractional rainfall coverage and rain intensity over convective and stratiform rainfall area. The analysis of precipitation budget shows that the diurnal cycles of convective and stratiform precipitation mainly correspond respectively to those of water vapor convergence and transport of hydrometeor from convective rainfall area to stratiform rainfall area in 1964, 1994 and 1995, whereas they mainly correspond to those of water vapor convergence in 2013. The diurnal cycles of convective and stratiform precipitation are mainly associated with those of rain intensity in 1964, 1994 and 1995. In 2013, the diurnal cycle of stratiform precipitation is mainly related to that of fractional rainfall coverage over stratiform rainfall area. The multiple peaks of convective precipitation mainly correspond to the rain intensity maxima associated with strong water vapor convergence.  相似文献   

3.
Both water vapor and heat processes play key roles in producing surface rainfall.While the water vapor effects of sea surface temperature and cloud radiative and microphysical processes on surface rainfall have been investigated in previous studies,the thermal effects on rainfall are analyzed in this study using a series of two-dimensional equilibrium cloud-resolving model experiments forced by zonally-uniform,constant,large-scale zonal wind and zero large-scale vertical velocity.The analysis of thermally-related surface rainfall budget reveals that the model domain mean surface rain rate is primarily associated with the mean infrared cooling rate.Convective rainfall and transport of hydrometeor concentration from convective regions to raining stratiform regions corresponds to the heat divergence over convective regions,whereas stratiform rainfall corresponds to the transport of hydrometeor concentration from convective regions and heat divergence over raining stratiform regions.The heat divergence over convective regions is mainly balanced by the heat convergence over rainfall-free regions,which is,in turn,offset by the radiative cooling over rainfall-free regions.The sensitivity experiments of rainfall to the effects of sea surface temperature and cloud radiative and microphysical processes show that the sea surface temperature and cloud processes affect convective rainfall through the changes in infrared cooling rate over rainfall-free regions and transport rate of heat from convective regions to rainfall-free regions.  相似文献   

4.
This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensitivity experiments for a pre-summer heavy rainfall event over southern China from 3-8 June 2008 coupled with National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) data.The rainfall partitioning analysis based on the surface rainfall budget indicates that the exclusion of vertical wind shear decreases the contribution to total rainfall from the largest contributor,which is the rainfall associated with local atmospheric drying,water vapor divergence,and hydrometeor loss/convergence,through the reduction of the rainfall area and reduced rainfall during the rainfall event.The removal of vertical wind shear increases the contribution to total rainfall from the rainfall associated with local atmospheric drying,water vapor convergence,and hydrometeor loss/convergence through the expansion of the rainfall area and enhanced rainfall.The elimination of vertical wind shear enhances heavy rainfall and expands its area,whereas it reduces moderate rainfall and its area.  相似文献   

5.
In the present study, the performances of the NWP models on two heavy rainfalls on 20 July and 22 August 2021 over Henan Province were investigated. The impacts of the water vapor transport to the extreme rainfall were further discussed. The results showed that the regional model system in the Guangzhou Meteorological Service generally showed high scores on the extreme rainfall over Henan. The maximum 24h accumulative rainfall by the 24h forecasts by the CMA-GD reached 556 mm over Henan Province. The 24-h and 48-h Threat Score (TS) of heavy rainfall reached 0.56 and 0.64. The comparisons of the Fraction Skill Score (FSS) verifications of the heavy rainfall by CMA-GD and CMA-TRAMS at the radium of 40km reached 0.96 and 0.87. The water vapor transport to the extreme rainfall showed that the vertically integrated water vapor transport (IVT) of the whole layer before the occurrence of the heavy rainfall exhibited a double-eyes distribution in case 7 · 20. The north eye over Henan reached the same magnitude of IVT as the typhoon eye (Cempaka) over south China. The IVT over the lower troposphere (<500 hPa) showed an overwhelming magnitude than the upper level, especially in the planetary boundary layer (<700 hPa). More practical technical needs to be developed to improve its performances on the forecasting of extreme rainfall, as well as more experiments need to be conducted to examine the effects of the specific terrain and physical schemes on the extreme rainfall.  相似文献   

6.
The surface rainfall processes associated with the torrential rainfall event over Hubei,China,during July 2007 were investigated using a two-dimensional cloud-resolving model.The model integrated the large-scale vertical velocity and zonal wind data from National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) for 5 days.The time and model domain mean surface rain rate was used to identify the onset,mature,and decay periods of rainfall.During the onset period,the descending motion data imposed in the lower troposphere led to a large contribution of stratiform rainfall to the model domain mean surface rainfall.The local atmospheric drying and transport of rain from convective regions mainly contributes to the stratiform rainfall.During the mature periods,the ascending motion data integrated into the model was so strong that water vapor convergence was the dominant process for both convective and stratiform rainfall.Both convective and stratiform rainfalls made important contributions to the model domain mean surface rainfall.During the decay period,descending motion data input into the model prevailed,making stratiform rainfall dominant.Stratiform rainfall was mainly caused by the water vapor convergence over raining stratiform regions.  相似文献   

7.
A heavy rainfall event caused by a mesoscale convective system (MCS), which occurred over the Yellow River midstream area during 7–9 July 2016, was analyzed using observational, high-resolution satellite, NCEP/NCAR reanalysis, and numerical simulation data. This heavy rainfall event was caused by one mesoscale convective complex (MCC) and five MCSs successively. The MCC rainstorm occurred when southwesterly winds strengthened into a jet. The MCS rainstorms occurred when low-level wind fields weakened, but their easterly components in the lower and boundary layers increased continuously. Numerical analysis revealed that there were obvious differences between the MCC and MCS rainstorms, including their three-dimensional airflow structure, disturbances in wind fields and vapor distributions, and characteristics of energy conversion and propagation. Formation of the MCC was related to southerly conveyed water vapor and energy to the north, with obvious water vapor exchange between the free atmosphere and the boundary layer. Continuous regeneration and development of the MCSs mainly relied on maintenance of an upward extension of a positive water vapor disturbance. The MCC rainstorm was triggered by large range of convergent ascending motion caused by a southerly jet, and easterly disturbance within the boundary layer. While a southerly fluctuation and easterly disturbance in the boundary layer were important triggers of the MCS rainstorms. Maintenance and development of the MCC and MCSs were linked to secondary circulation, resulting from convergence of Ekman non-equilibrium flow in the boundary layer. Both intensity and motion of the convergence centers in MCC and MCS cases were different. Clearly, sub-synoptic scale systems in the middle troposphere played a leading role in determining precipitation distribution during this event. Although mesoscale systems triggered by the sub-synoptic scale system induced the heavy rainfall, small-scale disturbances within the boundary layer determined its intensity and location.  相似文献   

8.
An ensemble Kalman filter based on the Weather Research and Forecasting Model (WRF-EnKF) is used to explore the effectiveness of the assimilation of surface observation data in an extreme local rainstorm over the Pearl River Delta region on 7 May 2017. Before the occurrence of rainstorm, the signals of weather forecasts in this case are too weak to be predicted by numerical weather model, but the surface temperature over the urban area are high. The results of this study show that the wind field, temperature, and water vapor are obviously adjusted by assimilating surface data of 10-m wind, 2-m temperature, and 2-m water vapor mixing ratio at 2300 BST 6 May, especially below the height of 2 km. The southerly wind over the Pearl River Delta region is enhanced, and the convergence of wind over the northern Guangzhou city is also enhanced. Additionally, temperature, water vapor mixing ratio and pseudoequivalent potential temperature are obviously increased over the urban region, providing favorable conditions for the occurrence of heavy precipitation. After assimilation, the predictions of 12-h rainfall amount, temperature, and relative humidity are significantly improved, and the rainfall intensity and distribution in this case can be successfully reproduced. Moreover, sensitivity tests suggest that the assimilation of 2-m temperature is the key to predict this extreme rainfall and just assimilating data of surface wind or water vapor is not workable, implying that urban heat island effect may be an important factor in this extreme rainstorm.  相似文献   

9.
The effects of sea surface temperature(SST) and its diurnal variation on diurnal variation of rainfall are examined in this study by analyzing a series of equilibrium cloud-resolving model experiments which are imposed with zero large-scale vertical velocity.The grid rainfall simulation data are categorized into eight rainfall types based on rainfall processes including water vapor convergence/divergence,local atmospheric drying/moistening,and hydrometeor loss/convergence or gain/divergence.The rainfall contributions of the rainfall types with water vapor convergence are insensitive to the increase in SST from 27°C to 29°C during the nighttime,whereas they are decreased during the daytime.The rainfall contributions of the rainfall types with water vapor convergence are decreased as the SST increases from 29°C to 31°C but the decreases are larger during the nighttime than during the daytime.The rainfall contributions of the rainfall types with water vapor convergence are decreased by the inclusion of diurnal variation of SST with diurnal difference of 1°C during the nighttime,but the decreases are significantly slowed down as the diurnal difference of SST increases from 1°C to 2°C.The rainfall contributions of the rainfall types with water vapor convergence are insensitive to the inclusion of diurnal variation of SST during the daytime.  相似文献   

10.
A heavy rainfall event that occurred in Shandong Province in 26 28 August 2004 was caused mainly by Typhoon Acre and cold air activities related to a westerly trough. The event was triggered by an inverted typhoon trough, which was closely associated with the intensification of the low-level southeasterly flow and the northward transport of heat and momentum in the periphery of the typhoon low. A numerical simulation of this event is performed using the nonhydrostatic mesoscale model MM5 with two-way interactive and triply-nested grids, and the structure of the inverted typhoon trough is studied. Furthermore, the formation and development mechanism of the inverted typhoon trough and a mesoscale vortex are discussed through a vorticity budget analysis. The results show that the heavy rainfall was induced by the strong convergence between the strong and weak winds within the inverted typhoon trough. Dynamic effects of the low-level jet and the diabatic heating of precipitation played an important role in the development of the inverted typhoon trough and the formation of the mesoscale vortex. The vorticity budget analysis suggests that the divergence term in the low troposphere, the horizontal advection term, and the convection term in the middle troposphere were main contributors to positive vorticity. Nonetheless, at the same pressure level, the effect of the divergence term and that of the adveetion term were opposite to each other. In the middle troposphere, the vertical transport term made a positive contribution while the tilting term made a negative contribution, and the total vorticity tendency was the net result of their counteractions. It is found that the change tendency of the relative vorticity was not uniform horizontally. A strong positive vorticity tendency occurred in the southeast of the mesoscale vortex, which is why the heavy rainfall was concentrated there. The increase of positive vorticity in the low (upper) troposphere was caused by horizontal convergence (upward transport of vorticity from the lower troposphere). Therefore, the development of the inverted typhoon trough and the formation of the mesoscale vortex were mainly attributed to the vorticity generated in the low troposphere, and also the vertical transport of vorticity from the low and middle troposphere.  相似文献   

11.
华南春季降水和水汽输送的年代际变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
The characteristics of spring precipitation and water vapor transport in South China were analyzed by using observational data and the National Centers for Environmental Prediction (NCEP) reanalysis data. The results show that, during the spring, each component of the water cycle (precipitation, wind field, specific humidity, water vapor transport, etc.) in South China exhibits a notable interdecadal variability. An abrupt increase in spring precipitation occurred in the early 1970s. During the dry period from 1958 to 1971, a water vapor flux divergence (positive divQ) existed in South China, which may have led to the deficiency in rainfall. However, during the wet period from 1973 to 1989, there was a remarkable water vapor flux convergence (negative divQ) in South China, which may have resulted in the higher rainfall. The interdecadal variability of water vapor transport is closely related to the interdecadal variability of wind fields, although the interdecadal variability of specific humidity also plays a role to some extent, and the interdecadal variability of the zonal water vapor transport contributes much more to the interdecadal variability of spring precipitation than the meridional water vapor transport.  相似文献   

12.
A numerical simulation of a torrential rain event occurring in the Jiang-Huai Valley of China from 22-24 June 1999 is performed and analyzed by using the PSU/NCAR MM5 mesoscale non-hydrostatic model. The high-resolution model output data are utilized to diagnose the double front structure, and the distributions of potential temperature, equivalent potential temperature, and specific humidity in the vicinity of the Meiyu Front System (MYFS) in the Jiang-Huai Valley. The results show that both the potential temperature gradient and the specific humidity gradient have important impacts on the two strong equivalent potential temperature gradient zones associated with the double front structure of the MYFS, but the latter (moisture gradient) is more important. In addition, the tendency equation of specific humidity gradient is theoretically derived. It shows that variations of the specific humidity gradient are related to the advection, convergence/divergence, horizontal and vertical vorticities (secondary circulation) effects and the gradient of water vapor source/sink. As an example, the budget of the meridional component of the tendency equation is selected and diagnosed by using the above model simulation data of the torrential rain event. It is shown that the variation of the specific humidity gradient averaged throughout the simulation is mainly controlled by the convergence/divergence effect, the secondary circulation effect associated with the horizontal vorticities, and the water vapor source/sink effect. Since the water vapor source/sink is often formed from the phase change processes of water vapor in the air and thus directly associated with cloud and precipitation microphysics processes, the variation of the specific humidity gradient is closely related with cloud and precipitation microphysics and the distribution, development and evolution of cloud and rainfall systems. The double front structure of the MYFS provides an advantageous environmental condition for the development and movement of the mesoscale torrential rain system nearby. In turn, the development of the torrential rain exerts a signifiant impact on the MYFS through changing the thermal and moisture distributions.  相似文献   

13.
A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and associated physical processes. The analysis shows that the maximum negative lag correlations between the model domain mean CAPE and rainfall occurs around lag hour 6. The minimum mean CAPE lags mean and convective rainfall through the vapor condensation and depositions, water vapor convergence, and heat divergence whereas it lags stratiform rainfall via the transport of hydrometeor concentration from convective regions to raining stratiform regions, vapor condensation and depositions, water vapor storage, and heat divergence over raining stratiform regions.  相似文献   

14.
The water vapor budget and the cloud microphysical processes associated with a heavy rainfall system in the Dabie Mountain area in June 2008 were analyzed using mesoscale reanalysis data(grid resolution 0.03 × 0.03,22 vertical layers,1-h intervals),generated by amalgamating the local analysis and prediction system(LAPS).The contribution of each term in the water vapor budget formula to precipitation was evaluated.The characteristics of water vapor budget and water substances in various phase states were evaluated and their differences in heavy and weak rainfall areas were compared.The precipitation calculated from the total water vapor budget accounted for 77% of actual precipitation;surface evaporation is another important source of water vapor.Water vapor within the domain of interest mainly came from the lower level along the southern boundary and the lower-middle level along the western boundary.This altitude difference for water vapor flux was caused by different weather systems.The decrease of local water vapor in the middle-lower layer in the troposphere during the system development stage also contributed to precipitation.The strength and the layer thickness of water vapor convergence and the content of various water substances in the heavy rainfall areas were obviously larger than in the weak rainfall areas.The peak values of lower-level water vapor convergence,local water vapor income,and the concentration of cloud ice all preceded the heaviest surface rainfall by a few hours.  相似文献   

15.
Analysis of a heavy rainfall in a lower latitude plateau and characteristics of water vapor transportation have been conducted by using conventional data and denser surface data. The results show: (1) the heavy rainfall was caused by a series of mesoscale systems under favorable large-scale conditions when the warm moister air and cold air interacted with each other. At the same time, the coupling between the upper- and lower-level jets was revealed. It is also found that there exists some different characteristics among the main influencing systems of heavy rainfalls in Yunnan, such as the Indian-Myanmar trough and the path of the cold air, compared with those in East and South China. (2) The interaction between mesoscale convergence lines near the ground may be a possible triggering mechanism for the occurrence of mesoscale systems, and the dynamical and thermal dynamical structure of the mesoscale systems was very obvious. The convergence lines may relate closely to the terrain of Yunnan, China. (3) The computation of the water vapor budget reveals that the primary source of water vapor supply for heavy rainfall was in the Bay of Bengal. In this case, the water vapor could be transported into Yunnan even though the amount of water vapor was less than that in the lower troposphere in East and South China. In addition, the analysis for three-dimensional air parcel trajectories better revealed and described the source location and the transportation of water vapor to Yunnan.  相似文献   

16.
In this study,we aimed to elucidate the critical role of moisture transport affecting monsoon activity in two contrasting summers over the Arabian Sea during the years 1994,a relatively wet year,and 2002,a relatively dry year.A comprehensive diagnostic evaluation and comparisons of the moisture fields were conducted;we focused on the precipitation and evaporation as well as the moisture transport and its divergence or convergence in the atmosphere.Monthly mean reanalysis data were obtained from the National Centers for Environmental Prediction(NCEP-I and-II).A detailed evaluation of the moisture budgets over Pakistan during these two years was made by calculating the latent energy flux at the surface(E P) from the divergence of the total moisture transport.Our results confirm the moisture supply over the Arabian Sea to be the major source of rainfall in Pakistan and neighboring regions.In 1994,Pakistan received more rainfall compared to 2002 during the summer monsoon.Moisture flow deepens and strengthens over Arabian Sea during the peak summer monsoon months of July and August.Our analysis shows that vertically integrated moisture transport flux have a significant role in supplying moisture to the convective centers over Pakistan and neighboring regions from the divergent regions of the Arabian Sea and the Bay of Bengal.Moreover,in 1994,a deeper vertically integrated moisture convergence progression occurred over Pakistan compared to that in 2002.Perhaps that deeper convergence resulted in a more intense moisture depression over Pakistan and also caused more rainfall in 1994 during the summer monsoon.Finally,from the water budget analysis,it has been surmised that the water budget was larger in 1994 than in 2002 during the summer monsoon.  相似文献   

17.
Based on the daily regional mean rainfall,the Z-index method is used to identify persistent flood and drought events lasting for at least 10 days over a region where Dongting Lake and Poyang Lake sit(referred to as the"two-lake region"hereafter).The National Centers for Environmental Prediction(NCEP)reanalysis data are then utilized to perform a preliminary diagnostic analysis on these events.The results indicate that the composite standardized geopotential height at 500 hPa presents two different meridional wave trains from north to south over the East Asian-Pacific region,i.e.,a"-+-"pattern for the droughts and a"+-+"pattern for the floods,respectively.The developing,maintaining and decaying phases in the drought and flood events are closely related to the intensity and location of a subtropical high and an extra-tropical blocking high.It is shown that the East Asian summer monsoon is strong(weak)with the occurrence of persistent drought(flood)events.Droughts(floods)are accompanied by a weak(strong)tropical convergent system and a strong(weak)subtropical convergent system.Furthermore,the persistent drought(flood)events are associated with a divergence(convergence)of vertically integrated water vapor flux.In the vertical profile of water vapor flux,divergence(convergence)in the mid-and lower-levels and convergence(divergence)in the higher levels are evident in the droughts(floods).Both the divergence in the droughts and the convergence in floods are strongest at 850 hPa.  相似文献   

18.
This paper analyzes the differences in the characteristics and spatio–temporal variabilities of summertime rainfall and water vapor transport between the East Asian summer monsoon(EASM) and South Asian summer monsoon(SASM) systems. The results show obvious differences in summertime rainfall characteristics between these two monsoon systems. The summertime rainfall cloud systems of the EASM show a mixed stratiform and cumulus cloud system, while cumulus cloud dominates the SASM. These differences may be caused by differences in the vertical shear of zonal and meridional circulations and the convergence of water vapor transport fluxes. Moreover, the leading modes of the two systems' summertime rainfall anomalies also differ in terms of their spatiotemporal features on the interannual and interdecadal timescales. Nevertheless, several close links with respect to the spatiotemporal variabilities of summertime rainfall and water vapor transport exist between the two monsoon systems. The first modes of summertime rainfall in the SASM and EASM regions reveal a significant negative correlation on the interannual and the interdecadal timescales. This close relationship may be linked by a meridional teleconnection in the regressed summertime rainfall anomalies from India to North China through the southeastern part over the Tibetan Plateau, which we refer to as the South Asia/East Asia teleconnection pattern of Asian summer monsoon rainfall. The authors wish to dedicate this paper to Prof. Duzheng YE, and commemorate his 100 thanniversary and his great contributions to the development of atmospheric dynamics.  相似文献   

19.
In this paper, a sudden heavy rainfall event is analyzed, which occurred over the Yellow River midstream during 5–6 August 2014. We used observational, NCEP/NCAR reanalysis, high-resolution satellite, and numerical simulation data. The main results are as follows. Under an unfavorable environmental circulation, inadequate water vapor and unfavorable dynamic conditions but sufficient energy, a local sudden heavy rainfall was caused by the release of strong unstable energy that was triggered by cold air transport into middle and lower layers and the propagation of gravity waves. The distributions of rain area, rain clusters, and 10-minute rainfall showed typical mesoscale and microscale fluctuation characteristics. In the mesoscale rain area or upstream, there was a quasi-stationary wave of mesoscale gravity waves with their propagation downstream. In the course of propagation from southwest to northeast, the wavelength became longer and the amplitude attenuated. In the various phases of gravity wave development, there were evident differences in the direction of the wave front. Wave energy was mainly in the lower layers. Unstable vertical wind shear at heights of 1–6 km provided fluctuation energy for the gravity waves. The mechanisms of heavy rainfall formation were different at Linyou and Hancheng stations. Diabatic heating was the main source of disturbed effective potential energy at Linyou. The explosive short-period strong precipitation was caused by the release of strong effective potential energy triggered by the gravity waves, and its development and propagation after that energy maximized. In contrast, the latent heat release of upstream precipitation was the main source of disturbed effective potential energy at Hancheng. This formed a positive feedback mechanism that produced continuous precipitation. In the studied event, the development of westerly belt systems had disturbed the wind field. The contribution of kinetic energy generated by this disturbance could not be ignored. The Froude number, mountain shape parameter, and ratio between mountain height and temperature inversion layer thickness had various effects of atmosphere and terrain on mesoscale and microscale mountain waves. In upper and lower layers, there were five airflows that were strengthened by the terrain. All these had important influences on local heavy rainfall at Linyou and Hancheng stations.  相似文献   

20.
RIEMS‘ ability to simulate extreme monsoon rainfall is examined using the 18-month (April 1997 September 1998) integrated results. Model-simulated heavy precipitation over the Yangtze River valley during 11-30 June 1998 is compared with the observation, and the relationships between this heavy rainfall process and the large-scale circulations, such as the westerly jet, low-level jet, and water vapor transport,are analyzed to further understand the mechanisms for simulating heavy monsoon rainfall. The analysis results show that (1) RIEMS can reproduce the pattern of heavy precipitation over the Yangtze River valley during 11-30 June 1998, but it is shifted northwestwards. (2) The simulated West Pacific Subtropical High (WPSH) that controls the East Asia Monsoon evolution is stronger than the observation and is extended westwards, which possibly leads to the north westward shift of the heavy rain belt. (3) The Westerly jet at 200 hPa and the Low-level jet at 850 hPa, both of which are related to the heavy monsoon rainfall,are reasonably reproduced by RIEMS during 11-30 June 1998~ although the intensities of the simulated Westerly/Low-level jets are strong and the location of the Westerly jet leans to the southeast,which may be the causes of RIEMS producing too much heavy rainfall in the north of the Yangtze River valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号