首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a growing body of evidence to suggest that bivalve molluscs routinely ingest zooplankton. To elucidate further these observations, a 15-month study of zooplankton ingestion by farmed mussels was conducted using mussel long-lines in Bantry Bay, Ireland. Stomach content analysis of the mussels showed that there was evidence of zooplankton ingestion throughout the sampling period, but that highest mean numbers of zooplankters were ingested by mussels in the spring and summer months. Various zooplankton species were present in mussel stomachs. Harpacticoid copepods were found more often in stomach contents than calanoid copepods, probably due to their proximity to the bivalves' inhalent siphons. Barnacle cyprids featured in large numbers in stomach contents, but only for a period of 3 months which broadly corresponded with their pelagic phase. Sizes of ingested zooplankton ranged from 126 μm to 6 mm, but more of the smaller zooplankters (e.g. crustacean nauplii) were ingested. When lengths of ingested copepods were compared with those found in plankton net samples, it was found that the net-sampled copepods were significantly larger than those found in mussel stomachs, suggesting that mussels select for smaller categories within the zooplankton available to them. Soft bodied zooplankton was rarely found in mussel stomachs but their absence may be due to rapid digestion or they may have been destroyed in the preservation process. Ingestion of zooplankton by bivalves is discussed in the context of the impacts mussel farms have on resident zooplankton populations.  相似文献   

2.
Cross-shelf distribution and abundance of copepod nauplii and copepodids were measured during three summer upwelling seasons (2000–2002) in a coastal upwelling zone off northern California. These 3 years varied considerably in the intensity of winds, abundance of chlorophyll, and water temperature. The cruises in 2000 were characterized by relaxation conditions, with generally high levels of chlorophyll and high water temperature. The cruises in 2001 and 2002 were dominated by strong and persistent upwelling events, leading to lower chlorophyll and water temperatures. The copepod assemblage was dominated by Oithona spp., Acartia spp. and Pseudocalanus spp., with Metridia pacifica (lucens), Microsetella rosea, Oncaea spp. and Tortanus discaudatus also common during all 3 years. The cross-shelf distribution of copepods was generally shifted offshore during upwelling and onshore during relaxation events, although some variability between species occurred. Abundance of all life stages generally exhibited a negative correlation with cross-shelf transport averaged over at least 1–4 days and lagged by 0–3 days, indicating lower abundances during and immediately after active upwelling. However, copepod nauplii seemed to respond positively to wind events lasting 1–5 days followed by a period of relaxation lasting 6 or 7 days. These rapid rates of change in abundance are probably too great to be due to in situ growth and reproduction alone; physical processes must also play a role. These results suggest a highly dynamic relationship between copepods and upwelling events off northern California, with species-specific responses to upwelling to be expected.  相似文献   

3.
We investigated zooplankton distribution in September 2006/2007 at eight stations across Fram Strait in contrasting water masses ranging from cold Polar water to warm Atlantic water. Our main objectives were: (1) to describe the plankton community in the upper 200 m during autumn, and (2) to investigate the importance of small-sized copepods and protozooplankton in an arctic ecosystem when the majority of the large Calanus species had entered diapause. We sampled both with a WP-2 net and Go-Flo bottle and show that small copepods <1 mm are significantly undersampled using a WP-2 net with 90 μm mesh.Small copepods and protozooplankton made a significant contribution both in terms of abundance and total zooplankton biomass at all stations in September, when the large calanoid copepods had left the upper 200 m. The dominating group in the upper 60 m at all stations was Oithona spp. nauplii and their daily estimated grazing potential on the <10 μm phytoplankton ranged from 0.1% to 82% of the standing stock. Both Oithona copepodites and nauplii biomass showed a significantly positive relation with temperature, but not with potential food. Heterotrophic protozooplankton, on the other hand, were most likely bottom-up regulated by the availability of phytoplankton <10 μm. We hypothesise that Oithona nauplii and protozooplankton compete for food and conclude that there was a strong link between the zooplankton community and the microbial food web in Fram Strait.  相似文献   

4.
Many estuarine and coastal planktonic copepods depend on the hatching of benthic resting eggs for recruitment of nauplii to the water column population. The distribution and abundance of viable resting eggs of Acartia pacifica in the Xiamen Bay were determined by the presence of nauplii in the laboratory. The number of viable eggs varied temporally and spatially. The maximum number (9.2×104m-2) of viable eggs was in summer. In spring the average abundance of viable eggs was 5.6×104 m-2. The abundances of viable eggs in fall and winter were similar, respectively 2.7×104 and 3.3×104 m-2, which were the lowest in the year. The numbers of viable eggs inside the stations of the Xiamen Bay were higher than those outside the stations. The viable eggs were found at all depths (0~10 cm),although not in every station. The maximin number did not necessarily occur in the uppermost centimeter of the sediments but often occurred several centimeters below the water-sediment interface. The accumulation of viable eggs in the seabed of a subtropical bay constitutes a potential source of recruitment of nauplii into the pelagic population.  相似文献   

5.
Stable carbon isotopes were used to determine the contribution of emergent demersal zooplankton to the diet of the scyphozoan jellyfish Catostylus mosaicus at Smiths Lake, New South Wales, Australia. A preliminary study in 2004 indicated that there was no difference in the δ13C of ectodermal tissue and mesoglea of the medusae. In 2005, medusae and zooplankton present during the day and night were sampled and isotopic signatures were modelled using IsoSource. Modelling indicated that: (1) mollusc veligers and copepods sampled during the day contributed <13% of the carbon to the jellyfish; (2) copepods sampled at night contributed up to 25%; and (3) the large, emergent decapod Lucifer sp. contributed 88–94%. We hypothesised, therefore, that medusae derive most of their carbon from emergent species of zooplankton. In 2006, sampling done in 2005 was repeated three times over a period of 4 weeks to measure short-term temporal variation in isotopic signatures of medusae and zooplankton, and emergent demersal zooplankton was specifically sampled using emergence traps. Short-term temporal variation in isotopic signatures was observed for some taxa, however, actual variations were small (<1.5‰) and the values of medusae and zooplankton remained consistent relative to each other. IsoSource modelling revealed that mysid shrimp and emergent copepods together contributed 79–100% of the carbon to the jellyfish, and that the maximum possible contribution of daytime copepods and molluscs was only 22%. Jellyfish apparently derive most of their carbon from emergent zooplankton and by capturing small numbers of relatively large taxa, such as Lucifer sp. or mysid shrimp. Small but abundantly captured zooplankton (such as mollusc veligers) contribute only minor amounts of carbon. Jellyfish have a major role in the transfer of carbon between benthic and pelagic food webs in coastal systems.  相似文献   

6.
Size and taxonomic structure of plankton community carbon biomass for the 0.2–2000 μm equivalent spherical diameter range were determined at the equator at 175°E in September 1990–1993 and April 1994. Total biomass of the plankton community ranged from 1944 to 3448 mg C m−2. Phytoplankton, zooplankton and bacteria carbon biomasses were 604–1669 mg C m-2, 300–797 mg C m2, and 968–1200 mg C m-2, and the percentages were 31–54%, 15–26%, and 29–54%, respectively. Biomass of heterotrophic bacteria was always the largest fraction andProchlorococcus biomass was second. Heterotrophic and autotrophic flagellates and dinoflagellates in the nanoplankton size range and copepods (adults and copepodites) in the mesoplankton range were also high. Relatively small biomass was observed in the microplankton size range. The differences in integrated biomass of plankton community for El Nin˜o type oligotrophic conditions of September 1990–1993 and non-El Nifio type mesotrophic conditions of April 1994 were generally small compared with the interannual difference during 1990–1993. However, the percentage ofProchlorococcus in phytoplankton carbon biomass was larger in non-El Nin˜o year. Biomasses of cyanobacteria, diatom, dinoflagellates, nauplii of copepods, and crustaceans other than copepods were larger in the non-El Nin˜o year. Primary production increased significantly from El Nin˜o to non-El Nin˜o years. Carbon flow through the plankton food chain was estimated using the plankton carbon biomass data, primary production measurements, and published empirical relationships.  相似文献   

7.
During the 2006 Italian Antarctic expedition a diel sampling was performed close to Cape Hallett (Ross Sea) during the Austral summer. Under-ice seawater samples (4 m) were collected every 2 h for 28 h in order to estimate prokaryotic processes' variability and community structure dynamics. Prokaryotic and viral abundances, exoenzymatic activities (β-glucosidase, chitinase, lipase, alkaline phosphatase and leucine aminopeptidase), prokaryotic carbon production (3H-leucine incorporation) and community structure (Denaturing Gradient Gel Electrophoresis – DGGE fingerprints) were analysed. Results showed that the diel variability of the prokaryotic activity followed a variation in salinity, probably as a consequence of the periodical thawing of sea ice (driven by solar radiation and air temperature cycles), while negligible variation in viral and prokaryotic abundances occurred. The Bacterial and Archaeal community structures underwent an Operational Taxonomic Units (OTUs) temporal shift from the beginning to the end of the sampling, while Flavobacteria-specific primers highlighted high variations in this group possibly related to sea ice melting and substrate release.  相似文献   

8.
9.
为评估短角异剑水蚤(Apocyclops royi)作为海水鱼类仔稚鱼的饵料价值和投喂效果,比较分析了其与卤虫无节幼体(Artemia nauplii)的脂肪酸组成及2种生物饵料对克氏双锯鱼(Amphiprion clarkii)稚鱼存活、生长和脂肪酸组成的影响。结果显示,短角异剑水蚤DHA、EPA和ARA含量分别达21.185%、11.088%和3.250%,海水仔稚鱼必需脂肪酸(EFA)总含量高达37.417%,均显著高于卤虫无节幼体。投喂短角异剑水蚤的克氏双锯鱼稚鱼(5~20 d)成活率(80.71%±8.23%)与投喂卤虫无节幼体组(76.30%±7.00%)差异不显著;稚鱼体长(7.75 mm±1.18 mm)、体重(0.0163 g±0.0080 g)和体长特定生长率(3.46%±0.75%)均显著高于卤虫无节幼体投喂组;稚鱼体内DHA(21.843%)、EPA(6.914%)和ARA(2.725%)含量也均显著高于后者。研究表明,短角异剑水蚤适于作为海水鱼类仔稚鱼的生物饵料,在水产养殖中具有广阔的应用前景。  相似文献   

10.
The contribution of detritus from seagrass and other primary producers to faunal production in unvegetated nearshore areas was examined primarily using stable isotopes. Fish, macroinvertebrates, meiofauna and primary producers (seagrasses, macroalgae, seston and benthic microalgae) were sampled from sites in south-western Australia. All samples were analysed for δ13C and δ15N values and fish gut contents were determined. δ13C values for seagrasses in the region were high compared to other macrophytes, ranging from 49.9 to −8.2‰ compared to −19.8 to −12.6‰ for macroalgae. The δ15N values ranged between 4.0 and 7.7‰ for the red, brown and green algae, and between 3.2 and 5.9‰ for seagrasses. Seston and benthic microalgae samples had a mean δ13C value of −12.8 and −14.0‰, respectively, and their δ15N values were comparable to the macroalgae. All invertebrate fauna had mean δ13C values considerably lower than seagrasses. However, individual samples harpacticoid copepods and polychaetes had a value as high as −11.7‰. δ15N values for consumers were higher than those of the primary producers, except for copepods and amphipods. The δ13C values for fish had a relatively small range, between −16.6 and −13.1‰, and the δ15N values of fish were elevated compared to the invertebrates and primary producers, ranging mostly between 10.0 and 12.6‰. Mixing model analysis based on δ13C values indicated that seagrass ranked low as a likely carbon source for all invertebrates other than harpacticoid copepods at a single site and some samples of polychaetes. The δ13C values for fish were similar to those of a combination of harpacticoid and calanoid copepods, amphipods and polychaetes. The consumption of harpacticoid copepods by some fish species indicates that Amphibolis and Posidonia species in south-western Australia can contribute to the food web of unvegetated nearshore areas as detritus, but brown algae is likely to make a greater contribution. At least for the time of year that was sampled, the flow of detrital seagrass material into the foodweb may be mediated by specific detrivores, in this case harpactacoid copepods, rather than by all detritivores.  相似文献   

11.
Resource partioning among the planktivorous stages of eight fish species occurring in a Mediterranean coastal lagoon was studied. Five species were migratory mullets that spawned in the sea (Liza ramada, L. aurata, L. saliens, Chelon labrosusandMugil cephalus), while the other three species were resident and spawned in the lagoon (Atherina boyeri, Cyprinus carpioandGambusia holbrooki).Mullet fry exhibited similar diets, based on the consumption of zooplanktonic Crustacea such as copepods and cladocerans, although adult chironomids were also important.Gambusia holbrookiandA. boyerifed on small prey such as copepod nauplii, copepodites and rotifers, whileC. carpioconsumed larger prey preferentially (cladocerans and copepods).According to the trophic overlap and niche width results, seven species pairs could be competing in the estuary, although further experimental evidence is still required.  相似文献   

12.
In the oyster Ostrea chilensis the adult female broods the young for almost the entire developmental period, releasing a large pediveliger larva (450 μm shell length) with an extremely short pelagic phase. In this study of the larval physiology, the dry weight of the embryo or larva remained constant during the early developmental stages (as far as, and including, the trochophore), but the veliger grew steadily to reach 8 μg at 450 μm shell length, the stage at which it was ready for release. During this growth period the veliger consumed metabolic reserves (62% protein and 38% lipid). Carbohydrate levels were negligible. Chilean oyster veligers larger than 275 μm shell length were able to remove particles from suspension, but clearance rate (2 μl h 1 larva 1 at 450 μm shell length) was much lower than published values for planktotrophic veligers. Low clearance rate in the veliger of O. chilensis is probably attributable to the absence of the postoral ciliary band. Oxygen uptake increased from 19 – 22 nl O2 h 1 ind 1 for pre-veliger stages to 32 nl O2 h 1 ind 1 for a veliger 450 μm long, which is consistent with published values for veligers in general when corrected for body weight. Excretion rate was low, increasing from 0.04 ng NH4-N h 1 larva 1 in the trochophore to 0.13 ng NH4-N h 1 larva 1 in a pediveliger of shell length 450 μm. Biochemical energy reserves were insufficient to meet the metabolic demands of the developing larva, suggesting that uptake of particles and/or dissolved organic matter from the mantle cavity of the female is necessary for successful development.  相似文献   

13.
The relationships between the seasonal fluctuations of the copepod Eurytemora affinis and the mysid Neomysis integer were studied from observed data and experimental results, using a predator–prey model in the oligo-mesohaline area of the Gironde estuary. Mean seasonal fluctuations of abundances were derived from long term data series collected from 1978 to 2003 for both species. In situ predator–prey experiments over a seasonal cycle were used to estimate the seasonal variation of the consumption rate of N. integer on E. affinis and to verify the order of magnitude of the biological parameters given by the model.Predator–prey experiments revealed a high seasonal variation in maximum consumption rates with a mean of 56 ± 9 ind. pred−1 d−1. Maximum consumption rates were always higher for adults than for juveniles of Neomysis integer. Recorded selectivities were higher on nauplii than on copepodids + adults of Eurytemora affinis, both for the juveniles and the adults of N. integer. Neomysis integer mainly fed on meroplanktonic larvae, when they were available in higher abundances, than E. affinis in their environment.Spring increases of abundance for Eurytemora affinis copepodids + adults seemed to be mainly controlled by temperature whereas its decreasing abundance in summer was more related to Neomysis integer predation, suggesting that summer fluctuations of E. affinis abundance are probably controlled by mysid predation at summer times. Using a Lotka–Volterra predator–prey model, the seasonal peak of abundance of the mysid N. integer was well reproduced considering a predation on copepodids + adults of E. affinis, and suggested a dependence between mysid and copepod seasonal variations. However, the seasonal peak amplitude could not be explained solely by a predation on copepodids + adults or on nauplii of the copepod. Thus, N. integer is probably dependent on the seasonal fluctuations of the copepod's abundance, complementing its diet with macrophytal detritus during periods of scarce food.  相似文献   

14.
Due to the lack of knowledge regarding annual bioaccumulation rates in estuarine and marine fauna, the main aim of this work was to study the annual mercury bioaccumulation in the well-documented bivalve species Scrobicularia plana along a human induced mercury gradient in the Ria de Aveiro coastal lagoon (Portugal) and in a nearby, non-polluted system (Mondego estuary), parallel to the risks associated with its consumption by humans.Minimum total mercury concentration was as low as 0.019 mg kg−1 (wwt) in 4+ year old organisms in the reference site, where a significant negative correlation (p < 0.05) was found between total mercury concentrations and size, resulting in negative bioaccumulation rates (detoxification). On the other hand, values reached 1.8 mg kg−1 (wwt) in 3+ year old bivalves from the most contaminated area, where a strong positive correlation with size was found (p < 0.01) and annual bioaccumulation rates were as high as 0.25 mg kg−1 yr−1. Annual bioaccumulation rates were highly correlated with suspended particulate matter mercury concentrations. Even though the levels of organic mercury contents increased parallel to the contamination gradient, at each sampling station, no increment was found with age, which corresponded to a decrease in organic mercury percentage with age.In terms of ecological management and public health, the ratio of 0.01 consistently found between Scrobicularia plana annual mercury accumulation rates and SPM mercury levels for most sites may permit to roughly estimate S. plana contamination of commercial sized individuals (>2.5 cm) and, if verified and confirmed in other systems, be used as a simple management tool.  相似文献   

15.
The invasive green alga Caulerpa racemosa var. cylindracea represents an important threat to the diversity of Mediterranean benthic coastal ecosystems by interfering with native species and modifying benthic assemblages. The present study deals, for the first time, with the temporal and spatial variability of the biomass and phenology of C. racemosa considering both deep- and shallow-water populations. Two sampling depths (30 and 10 m) were sampled at three different rocky bottom sites every 3 months in the Archipelago of Cabrera National Park (Western Mediterranean). All morphometric variables analysed showed a spatial variation and temporal patterns depending on depth. Between depths, C. racemosa biomass, stolon length, number of fronds and frond length were usually significantly higher at deep-water populations, suggesting that C. racemosa grows better in deep-waters. Deep- and shallow-water populations displayed a high temporal variation although no evidence of seasonal patterns was found, in contrast with what has been reported by other authors. The sources of this variability are still unknown but probably both physical factors and differential herbivory pressures display a key role.  相似文献   

16.
β-dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) concentrations were recorded from September 1999 to September 2000 in two geographically close ecosystems, differently affected by eutrophication: the Little Bay of Toulon and the Niel Bay (N.W. Mediterranean Sea, France). Little Bay had higher nutrient levels ([NO3]max. = 30.3 μM; [PO43−]max. = 0.46 μM) and higher chlorophyll a concentrations ([chl a]mean = 2.4 μg/L) compared to Niel Bay ([NO3]max. = 19.7 μM; [PO43−]max. = 0.17 μM; [chl a]mean = 0.4 μg/L). In the two sites, we measured dissolved (DMSPd < 0.2 μm) and particulate DMSP (DMSPp > 0.2 μm) concentrations. The DMSPp was particularly analysed in the 0.2–5, 5–90 and > 90 μm fractions. In the eutrophicated Little Bay, DMSPd concentrations showed a clear seasonality with high values from January to March (124–148 nM). The temporal profile of the DMSPp concentrations was similar, peaking in February–March (38–59 nM). In the less eutrophic Niel Bay, DMSPp concentrations were much lower (6–9 nM in March–April), whereas DMSPd concentrations were relatively high (110–92 nM in February–March). DMS concentrations were elevated from the end of the winter to the spring in Little Bay, ranging from 3 nM in October to 134 nM in March. In the less eutrophic Niel Bay, lower DMS levels were observed, generally not exceeding 20 nM. Each particulate fraction (0.2–5; 5–90; > 90 μm) contained less DMSP in Niel Bay than in Little Bay. At both sites, the 5–90 μm fraction made up most of the DMSPp. This 5–90 μm fraction consisted of microphytoplankton, principally Dinophyceae and Bacillariophyceae. The 5–90 μm biomass calculated from cell biovolumes, was more abundant in Little Bay where the bloom at the end of the winter (165 μg/L in March) occurred at the same time as the DMSP peaks. The estimated DMSPp to biomass ratio for the 5–90 μm fraction was always higher in Little Bay than in Niel Bay. This suggests that the high DMSP levels recorded in Little Bay were not only due to a large Dinophyceae presence in this ecosystem. Indeed, the peak of DMSPp to biomass ratio obtained from cell biovolumes (0.23 nmol/μg in March) was consistent with the proliferation of Alexandrium minutum. This Dinophyceae species may account for between 50% (2894 cells/L) and 63% (4914 cells/L) of the total phytoplankton abundance in the Little Bay of Toulon.  相似文献   

17.
We report here dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) levels as a function of plankton communities and abiotic factors over a 12-month cycle in the Mediterranean oligotrophic coastal and shallow ecosystem of Niel Bay (N.W. Mediterranean Sea, France). Total particulate DMSP (DMSPp) and DMS concentrations were highly seasonal, peaking during a spring (April) bloom at 8.9 nM and 73.9 nM, respectively. Significant positive correlations were found between total DMSPp concentration and the abundance or biomass of the dinoflagellate Prorocentrum compressum (Spearman's rank correlation test: r = 0.704; p = 0.011). Similarly, DMS concentrations peaked during the development of blooms of P. compressum and Gymnodinium sp. There seemed to be a positive relationship between the chlorophyll a to pheopigment ratio and DMS concentrations, suggesting that DMS was released during phytoplankton growth. High DMS levels recorded in the shallow Niel Bay may also result from the activity of benthic macroalgae, and/or macrophytes such as Posidonia spp., or the resuspension of sulfur species accumulating in sediments. The fractionation of particulate DMSP into three size classes (>90 μm, 5–90 μm and 0.2–5 μm) revealed that 5–90 μm DMSP-containing particles made the greatest contribution to the total DMSPp pool (annual mean contribution = 62%), with a maximal contribution in April (96%). This size class consisted mainly of dinoflagellates (annual mean contribution = 68%), with P. compressum and Gymnodinium sp. the predominant species, together accounting for up to 44% of the phytoplankton present. The positive correlation between DMSP concentration in the 5–90 μm size class and the abundance of P. compressum (Spearman's rank correlation test: r = 0.648; p = 0.023) suggests that this phytoplankton species would be the major DMSP producer in Niel Bay. The DMSP collected in the >90 μm fraction was principally associated with zooplankton organisms, dominated by copepods (nauplii and copepodites). DMSP>90, not due to a specific zooplankton production, resulted from the phytoplankton cells ingested during grazing. The concomitant peaks of DMS concentration and zooplankton abundance suggest that zooplankton may play a role in releasing DMSP and/or DMS through sloppy feeding.  相似文献   

18.
As part of the E-Flux project, we documented spatial variability and temporal changes in plankton community structure in a cold-core cyclonic eddy in the lee of the Hawaiian Islands. Cyclone Opal spanned 200 km in diameter, with sharply uplifted isopycnals (80–100 m relative to surrounding waters) and a strongly expressed deep chlorophyll a maximum (DCM) in its central core region of 40 km diameter. Microscopic and flow cytometric analyses of samples from across the eddy revealed dramatic transitions in phytoplankton community structure, reflecting Opal's well-developed physical structure. Upper mixed-layer populations in the eddy resembled those outside the eddy and were dominated by picophytoplankton. In contrast, the DCM was composed of large chain-forming diatoms dominated by Chaetoceros and Rhizosolenia spp. Diatoms attained unprecedented levels of biomass (nearly 90 μg C l−1) in the center of the eddy, accounting for 85% of photosynthetic biomass. Protozoan grazers displayed two- to three-fold higher biomass levels in the eddy center as well. We also found a distinct and persistent layer of senescent diatom cells overlying healthy populations, often separated by less than 10 m, indicating that we were sampling a bloom in a state of decline. Time-series sampling over 8 days showed a successional shift in community structure within the central diatom bloom, from the unexpected large chain-forming species to smaller forms more typical of the subtropical North Pacific. The diatom bloom of Cyclone Opal was a unique, and possibly extreme, example of biological response to physical forcing in the North Pacific subtropical gyre, and its detailed study may therefore help to improve our predictive understanding of environmental controls on plankton community structure.  相似文献   

19.
Production of the marine calanoid copepod Acartia steueri was measured from 2 October 1991 to 8 October 1992 at a station in Ilkwang Bay, on the southeastern coast of Korea. Phytoplankton standing stock ranged over 1.0 to 9.3 mg chl.a m−3, and annual primary productivity (by the C-14 method) at three stations was estimated at 200 gC m−2 yr−1. Acartia steueri (nauplii + copepodids + adults) were present in the plankton throughout the year, with seasonal variation in abundance. Biomass of A. steueri, excluding the NI stage, was 0.01–4.55 mgC m−3 (mean: 0.68 mgC m−3) with peaks in November, February, May and July-early August, and relatively low biomass in September– January. Instantaneous growth rates of the nauplius stages were higher than the copepodid stages. Annual production of A. steueri was 25.1 mgC m−3 yr−1 (or 166 mgC m−2 yr−1), showing peaks in November, May and July–August with a small peak in February, and low production in December–April and September–October. There were no significant relationships between the daily production rate of A. steueri and temperature or chlorophyll a concentration, indicating that unknown other factors might be related to the variation of the production rate.  相似文献   

20.
In the eastern North Water, most of the estimated annual new and net production of carbon (C) occurred during the main diatom bloom in 1998. During the bloom, at least 30% of total and new phytoplankton production occurred as dissolved organic carbon (DOC) and was unavailable for short-term assimilation into the herbivorous food web or sinking export. Based on particle interceptor traps and 234Th deficits, 27% of the particulate primary production (PP) sank out of the upper 50 m, with only 7% and 1% of PP reaching the benthos at shallow (≈200 m) and deep (≈500 m) sites, respectively. Mass balance calculations and grazing estimates agree that ≈79% of PP was ingested by pelagic consumers between April and July. During this period, the vertical flux of biogenic silica (BioSi) at 50 m was equivalent to the total BioSi produced, indicating that all of the diatom production was removed from the euphotic zone as intact cells (direct sinking) or empty frustules (grazing or lysis). The estimated flux of empty frustules was consistent with rates of herbivory by the large, dominant copepods and appendicularians during incubations. Since the carbon demand of the dominant planktivorous bird, Alle alle, amounted to ≈2% of the biomass synthesized by its main prey, the large copepod Calanus hyperboreus, most of the secondary carbon production was available to pelagic carnivores. Stable isotopes indicated that the biomass of predatory amphipods, polar cod and marine mammals was derived from these herbivores, but corresponding carbon fluxes were not quantified. Our analysis shows that a large fraction of PP in the eastern North Water was ingested by consumers in the upper 50 m, leading to substantial carbon respiration and DOC accumulation in surface waters. An increasingly early and prolonged opening of the Artic Ocean is likely to promote the productivity of the herbivorous food web, but not the short-term efficiency of the particulate, biological CO2 pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号