首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
太行山断裂带东南缘地壳三维P波速度结构成像   总被引:1,自引:0,他引:1       下载免费PDF全文
应用多年地震台网观测数据,使用多震相走时成像方法获得了太行山断裂带东南缘地壳的三维P波速度结构模型。结果表明:速度结构图像在浅部较好地反映了地表地形、地质构造的特征,深部显示地壳速度具有明显的横向变化特征。12km深度以上显示研究区北部太行山隆起区地壳主要呈现为高速区,南部沉降区为低速区,而12km深度以下具有反转的特点。整体显示速度异常的走向大致与邻近活动断裂走向一致。垂直速度剖面显示研究区地壳具有分层特征,上地壳厚约10km,速度横向变化较小;中、下地壳的界面呈现局部上隆或凹陷状,横向起伏变化较大。通过分析速度、断裂与中强地震发生的关系推测研究区具备发生中强震的深部孕震条件。  相似文献   

2.
川西地区台阵环境噪声瑞利波相速度层析成像   总被引:30,自引:12,他引:18       下载免费PDF全文
2006年中国地震局地质研究所地震动力学国家重点实验室在川西地区(26°N~32°N,100°E~105°E)布设了由297台宽频带数字地震仪组成的流动观测台阵.利用该密集台阵29°N以北156个台站2007年1~12月份的地震环境噪声记录和互相关技术,我们得到了所有台站对的面波经验格林函数和瑞利波相速度频散曲线,并进一步反演得到了观测台阵下方2~35 s周期的瑞利波相速度分布图像.本文结果表明,观测台阵覆盖的川滇地块、松潘-甘孜地块和四川盆地的地壳速度结构存在显著差异,具体表现为:(1)短周期(2~8 s)相速度分布与地表构造特征相吻合,作为川滇地块、松潘-甘孜地块和四川盆地之间的边界断裂,龙门山断裂带和鲜水河断裂带对上述三个地块上地壳的速度结构具有明显的控制作用,四川盆地前陆低速特征表明相应区域存在较厚的(约10 km)沉积盖层;(2)中周期(12~18 s)相速度分布表明,川滇地块和松潘-甘孜地块中上地壳速度结构存在明显的不均匀横向变化,并形成了尺度不同且高、低速相间的分块结构,而四川盆地中地壳整体上已经表现出相对高速;(3)长周期(25~35 s)相速度分布表明,松潘-甘孜地块,特别是川滇地块中下地壳表现为广泛的明显低速异常,意味着它们的中下地壳相对软弱,而四川盆地的中下地壳呈现整体性的相对高速,意味着四川盆地具有相对坚硬的中下地壳,并且以汶川地震的震中为界,龙门山断裂带的地壳结构显示了北段为高速异常,南段为低速异常的分段特征.  相似文献   

3.
基于四川盆地及周边的245个宽频带台站2010年9月—2014年9月期间的远震记录,提取双台路径瑞利面波相速度频散资料,反演得到四川盆地20~120s的高分辨率瑞利面波相速度及各向异性空间分布.在丰富区域地球物理基础数据的同时,结合已有研究成果对地壳上地幔变形耦合进行探讨,结果表明短周期(20~30s)的相速度分布与四川盆地的地质构造特征相吻合,作为川滇地块、松潘—甘孜地块和四川盆地之间的边界——龙门山断裂带和鲜水河断裂带对上述三个地块上地壳的速度结构具有明显的控制作用;松潘—甘孜地块,特别是川滇地块中下地壳普遍表现为明显的低速异常,表明中下地壳相对软弱;而四川盆地的中下地壳整体呈现相对高速,表明四川盆地具有相对坚硬的中下地壳.研究区域东南角接近北扬子地块与南扬子地块的缝合部位,呈现高速异常.四川盆地南部和东南邻区不同周期均具有较强的各向异性,且快波方向较为一致,反映这些地区不同深度变形耦合较好.四川盆地西部、北部及东北部邻区,不同周期的各向异性快波方向变化较大,不同深度变形耦合较差.这些特征与绕喜马拉雅东构造结的物质流动被扬子地块的高速地壳阻挡的宏观认识基本一致.  相似文献   

4.
利用川滇地区长期积累的地震走时观测资料和汶川地震余震观测资料对汶川地震震源区及周边区域地壳和上地幔P波三维速度结构进行了研究.结果表明,浅部P波速度分布与地表地质之间具有很好的对应关系.龙门山断裂带在20 km以上深度表现为高速异常带,彭灌杂岩体和宝兴杂岩体为局部高速异常区.龙门山断裂带中上地壳的局部高速异常体对汶川地震的余震分布具有明显的控制作用.在余震带南端,余震全部发生在与宝兴杂岩体对应的高速异常体的东北侧;在余震带的中段,与彭灌杂岩体对应的高速异常体在一定程度上控制了余震的分布;在余震带的东北端,宁强-勉县一带的高速异常体可能阻止了余震进一步向东北扩展.龙门山断裂带中上地壳的P波高速异常表明介质具有相对较高的强度,在青藏高原物质向东挤出过程中起到了较强的阻挡作用,有利于深部能量积累.在30 km深度之下,扬子地块具有明显的高速特征,其前缘随深度增加向青藏高原方向扩展,在下地壳和上地幔顶部已达到龙门山断裂带以西.  相似文献   

5.
利用川滇地区长期积累的地震走时观测资料和汶川地震余震观测资料对汶川地震震源区及周边区域地壳和上地幔P波三维速度结构进行了研究.结果表明,浅部P波速度分布与地表地质之间具有很好的对应关系.龙门山断裂带在20 km以上深度表现为高速异常带,彭灌杂岩体和宝兴杂岩体为局部高速异常区.龙门山断裂带中上地壳的局部高速异常体对汶川地震的余震分布具有明显的控制作用.在余震带南端,余震全部发生在与宝兴杂岩体对应的高速异常体的东北侧;在余震带的中段,与彭灌杂岩体对应的高速异常体在一定程度上控制了余震的分布;在余震带的东北端,宁强-勉县一带的高速异常体可能阻止了余震进一步向东北扩展.龙门山断裂带中上地壳的P波高速异常表明介质具有相对较高的强度,在青藏高原物质向东挤出过程中起到了较强的阻挡作用,有利于深部能量积累,在30 km深度之下,扬子地块具有明显的高速特征,其前缘随深度增加向青藏高原方向扩展,在下地壳和上地幔顶部已达到龙门山断裂带以西.  相似文献   

6.
基于Love波相速度反演南北地震带地壳上地幔结构   总被引:5,自引:3,他引:2       下载免费PDF全文
收集了南北地震带区域地震台网中292个地震台站2008年1月至2011年3月期间的地震波形数据,由频时分析方法提取了Love波相速度频散曲线,经过反演得到了研究区内的Love波相速度分布.根据Love波纯路径频散,采用线性反演方法对0.25°×0.25°的网格点进行了一维S波速度结构反演,利用线性插值获取了南北地震带地区的三维S波速度结构.结果显示了松潘—甘孜地体和川滇菱形块体地区的下地壳具有明显的S波低速层分布,该异常分布特征支持解释青藏高原隆升及其地壳物质运移的下地壳流模型.在100至120km深度上,川滇菱形块体西北部呈现较强的S波高速异常,这可能是印度岩石圈板块沿喜马拉雅东构造结下插至该区域所致,该区域下地壳的低速软弱物质与上地幔的高速强硬物质形成了鲜明对比,暗示了地壳和上地幔可能具有不同的构造运动和变形方式,这为该区域的壳幔动力学解耦提供了条件.  相似文献   

7.
根据本文提出的更为严格的地震数据筛选方法——横向分区地震均值筛选法,选取了四川、云南、重庆和贵州地震台网的224个固定台站和49个流动台站在2008年1月1日—2017年12月31日期间记录的48,177个地震、372,483条初至P波绝对到时数据以及2,413,407条精度较高的相对到时数据,利用区域双差地震层析成像方法联合反演了青藏高原东南缘川滇地区三维P波速度结构和地震震源参数.研究结果表明:(1)川滇地区上地壳结构横向不均匀性明显,四川盆地上地壳10 km深度范围内表现为低速异常,而松潘—甘孜地块、滇中地块则表现为明显的高速异常;(2)川滇地区地震主要沿着边界断裂分布,大多数地震为浅源地震,震源深度主要集中在5~15 km深度范围内,震源主要位于高速异常与低速异常交界区域,且偏向高速异常体一侧;(3)震源分布研究推测龙门山断裂带前山断裂东南侧可能存在一条倾向北西、倾角约为40.的北东向走向的隐伏断裂,且为芦山地震的主要发震断裂;(4)川滇地区中下地壳低速异常体可能反映了中下地壳弱物质流的存在,中下地壳物质流不是广泛分布在川滇地区,而是沿着川滇块体东部有限的通道向南流动.中下地壳流可能是沿着鲜水河断裂带向东南方向流出,在雅安一带遇到坚硬稳定的四川盆地的阻挡,一部分物质向北东方向流动,而另一部分物质转向南沿着安宁河断裂带和则木河断裂带分布,并继续向南沿着小江断裂带流动.  相似文献   

8.
根据福建及台湾海峡南部海陆联测试验记录到的Pg和Pm震相走时数据,利用速度与界面联合成像方法构建地壳三维P波速度结构,揭示了该区地壳深部构造特征.结果表明:福建和台湾海峡海陆过渡带以及海峡南部地壳速度结构存在明显的不均匀性,滨海断裂两侧速度结构复杂,随深度呈现明显的分段特征,其上地壳海陆过渡带呈高速特性,台湾海峡呈低速特性;下地壳海陆过渡带呈低速特性,台湾海峡呈高速特性;研究区莫霍面的深度约为28~33 km,存在较明显差异,闽粤交接部位存在明显的地壳厚度减薄,莫霍面深度接近28 km,这与正常型华南活动地块与减薄型南海活动地块交汇致使地壳厚度减薄有关,体现了活动块体边界构造特征.历史大震主要发生在高低速异常过渡带且有深大断裂穿过的区域,现今中小震主要分布于闽粤海陆过渡带,这一特征可能与此地广泛发育的断层和华南与南海活动地块相互作用有关.  相似文献   

9.
长白山火山区地壳S波速度结构的背景噪声成像   总被引:1,自引:0,他引:1       下载免费PDF全文
王武  陈棋福 《地球物理学报》2017,60(8):3080-3095
利用探测深俯冲的中国东北地震台阵NECsaids的60个流动台与固定地震台2010年7月至2014年12月的垂向连续波形数据,采用地震背景噪声成像方法获得了研究区6~40 s周期的瑞雷波相速度分布,并通过相速度频散反演得到了研究区下方0~50 km的三维S波速度结构.结果表明:研究区下方地壳S波速度结构存在明显的横向和纵向不均匀性,浅部速度结构与浅表地质构造单元有较好的对应,深部速度结构较好地反映了区域火山活动及深部热物质作用的结构特征;在长白山火山下方9~30 km深度范围内存在明显低速区并有向下延伸的趋势,推测可能为长白山火山地壳岩浆囊;在龙岗火山下方12~30 km深度范围内发现较弱的低速区,可能代表火山喷发后的残留物,而在镜泊湖火山下方没有明显的低速异常,说明镜泊湖火山地壳内可能不存在部分熔融的岩浆物质.  相似文献   

10.
利用接收函数方法对横跨秦岭造山带、渭河地堑及鄂尔多斯块体的15个地震观测台站下方的地壳结构进行研究分析,结果表明三种不同类型(造山带型、拉张盆地型和稳定克拉通型)的构造单元的地壳结构和物质组成存在明显的差异.秦岭北缘平均地壳厚度为37.8km,泊松比为0.247,相对偏低的泊松比表明地壳物质长英质组分增加.鄂尔多斯块体南缘平均地壳厚度为39.2km,泊松比为0.265,偏高的泊松比与鄂尔多斯下方古老的铁镁质结晶基底以及浅部沉积有关.通过接收函数正演计算表明低速的、厚度较大的松散沉积层对Mohorovicic不连续面(Moho)的震相具有较大影响,是渭河地堑内部台站的接收函数Moho转换震相不清楚的主要原因.S波速度结构反演结果表明渭河地堑上覆松散沉积层,其厚度约为4-8km,该沉积层使得位于渭河地堑内台站的接收函数Moho震相复杂.另外渭河地堑下方中下地壳位置存在一高速区域,该高速体可能与渭河断裂系统的活动有关.  相似文献   

11.
龙门山断裂带精细速度结构的双差层析成像研究   总被引:10,自引:11,他引:10       下载免费PDF全文
利用川西流动地震台阵、汶川地震震后应急台网记录到的P波到时资料,对2008年5月至2008年10月期间发生的汶川地震余震序列应用双差层析成像方法进行了地震震源和三维P波速度结构的联合反演.结果显示,联合反演获得的地震重定位结果与基于一维地壳参考模型的双差定位方法结果相近;研究区15 km以上速度结构与地表断裂分布密切相关,20 km以下深度呈现北东向和北西向交错结构.汶川地震破裂带南段龙门山断裂带之间上地壳呈现高速异常,速度结构的非均匀变化是控制余震分布和主震破裂传播的主要因素;联合反演结果给出了小鱼洞-理县方向存在隐伏断裂的速度结构证据,同时发现,破裂带北东段可能沿新发断裂扩展;结果确认了汶川地震起始段的高角度逆冲断裂特征,也确认了前山断裂和中央断裂在约20 km深度合并到脆韧转换带的特征.  相似文献   

12.
玉树地震震源区速度结构与余震分布的关系   总被引:14,自引:5,他引:9       下载免费PDF全文
利用玉树震区21个应急流动地震台站和青海省地震台网固定地震台站的观测数据,采用双差层析成像方法,对2010年4月14日至6月15期间发生的地震进行了重定位,并反演得到了玉树地震震源区的三维速度结构.重定位结果揭示余震主要沿NW向成窄带状分布在断层的两侧,表明脆性破裂应力释放主要集中于一个狭窄的区域内.在西北端,余震偏离玉树—甘孜断裂分布,在SW向也有分布,推测可能与南西向次级断裂有关.双差层析成像得到的速度结构在浅部与地表地质构造相一致,中上地壳的速度结构显示巴颜喀拉地块为高速异常,羌塘地块为低速异常.玉树地震余震分布与特定的速度结构存在相关性:主震发生在高低速过渡带偏高速体的一侧,余震主要分布在高速体外围,高速体内部几乎没有余震分布.一般说来,中上地壳的高速体通常具有较高的强度,可以积累较强的孕震能量.主震发生后,高速体内积累的弹性能量向周边释放,可能是导致高速体周边余震发生的主要原因.  相似文献   

13.
利用四川数字地震台网和流动地震台站在芦山MS7.0地震震后(2013年4月20日—6月23日)记录到的2026次区域地震事件的28188条P波到时资料,采用地震层析成像方法反演得到了芦山地震震源区及其周边区域中上地壳P波三维速度结构. 结果表明,浅部地壳的P波速度异常分布特征与地表地质构造、 地形和岩性密切相关,即成都断陷盆地表现出与第四纪沉积有关的低速异常区;犍为、 乐山一带的川中微升区和川青块体龙门山以西的邻近地带均表现为与构造抬升有关的高速异常;宝兴、 康定附近分布的基性火山岩及火山碎屑岩均呈局部高速异常分布. 芦山地震震源位于高低速异常分界线附近且偏向高速体一侧,其下方存在明显的低速异常分布,可能与流体的存在有关. 流体的作用导致中上地壳内部发震层的弱化,使孕震断层易于破裂,可能对芦山地震起到了触发作用. 芦山地震与汶川地震两次地震的余震密集区相距50 km,这50 km地震空区震源体的深度范围附近目前正处于高速异常区内,加之龙门山断裂带西南段又具有比较典型的断错地貌发育,使得该段地震空区(大邑—邛崃活动断裂破裂空段)现在所处的深浅部构造环境变得复杂,其潜在的地震危险性仍值得进一步关注.   相似文献   

14.
本文利用在龙门山断裂带周边布设的57个台站自2008年11月至2009年11月为期一年的垂直分量连续地震环境噪声数据,通过短周期地震环境噪声成像方法,获得了龙门山断裂带中北段地壳25km深度范围的S波精细速度结构.结果表明:(1)龙门山断裂带周边区域10km以上的速度结构与地表断裂的分布形态具有良好的一致性,速度结构控制了龙门山主要断层的深部延展特征;在15km及以下深度,S波速度结构呈现沿龙门山和沿岷山隆起走向的交叉构造格局,由此造成的速度结构差异可能影响了汶川地震的破裂过程;(2)速度结构随深度的分布特征为龙门山断裂带主要断层的深部延伸形态给出了良好的约束,结果进一步确认了龙门山断裂中段的高角度铲型断裂构造特征;(3)研究区的南端发现了龙门山断裂下方20km以下深度具有与松潘地块中地壳低速层相关的低速结构的迹象,这可能是汶川地震破裂带南段22km左右深度存在脆韧转换带的一个证据.研究结果显示出密集台阵和短周期环境噪声成像方法在地壳浅部精细结构和断层探测研究中具有巨大潜力.  相似文献   

15.
采用深地震反射剖面探测,结合地表地质信息,本文对芦山地区的地壳结构、深浅构造和隐伏活动断裂进行了分析.研究结果表明:该区上地壳结构特征清晰,深度约为15km左右;区内断裂由于受青藏高原向东南方向的推挤和坚硬的四川盆地阻挡的联合作用均属逆冲断裂,其中双石—大川断裂以低角度向深部延伸,主要表现为纯逆冲的运动学性质,并与周边小断裂共同组成叠瓦状断层构造.而广元—大邑断裂为上陡下缓式逆冲断裂,与其六条分支断裂共同组成了"正花状"构造,断裂活动是以逆冲为主,并伴随着小的水平滑动,是一条斜向逆冲的断裂.在芦山地震发震断裂的2km范围内推测存在一陡一缓两条断裂,并根据三者形态推测其在18km或以上收敛到一起并向深部延伸,从而使它们在芦山地震中被同时激活.研究结果揭示了研究区近地表活动断裂和地壳深部构造之间的关系,为进一步研究龙门山断裂带的深部构造环境、深浅构造关系以及断裂的活动性提供了有利的依据.  相似文献   

16.
In recent years, strong earthquakes of MS8.0 Wenchuan and MS7.0 Lushan occurred in the central-southern part of Longmenshan fault zone. The distance between the two earthquakes is less than 80 kilometers. So if we can obtain the inner structure of the crust and upper mantle, it will benefit us to understand the mechanism of the two earthquakes. Based on the high resolution dataset of Bouguer gravity anomaly data and the initial model constrained by three-dimensional tomography results of P-wave velocity in Sichuan-Yunnan region, with the help of the preconditioned conjugate gradient(PCG)inversion method, we established the three dimensional density structure model of the crust and upper mantle of the central-southern segment of Longmenshan, the spatial interval of which is 10 kilometers along the horizontal direction and 5 kilometers along the depth which is limited to 0~65km, respectively. This model also provides a new geophysical model for studying the crustal structure of western Sichuan plateau and Sichuan Basin. The results show obvious differences in the crustal density structure on both sides(Songpan-Ganzê block and Sichuan Basin)of Longmenshan fault zone which is a boundary fault and controls the inner crustal structure. In Sichuan Basin, the sedimentary layer is represented as low density structure which is about 10km thick. In contrast, the upper crust of Songpan-Ganzê block shows a thinner sedimentary layer and higher density structure where bedrock is exposed. Furthermore, there is a wide scale low density layer in the middle crust of the Songpan-Ganzê block. Based on this, we inferred that the medium intensity of the Songpan-Ganzê block is significantly lower than that of Sichuan Basin. As a result, the eastward movement of material of the Qinghai-Tibet plateau, blocked by the Sichuan Basin, is inevitably impacted, resulting in compressional deformation and uplift, forming the Longmenshan thrust-nappe tectonic belt at the same time. The result also presents that the crustal structure has a distinct segmental feature along the Longmenshan fault zone, which is characterized by obviously discontinuous changes in crustal density. Moreover, a lot of high- and low-density structures appear around the epicenters of Wenchuan and Lushan earthquakes. Combining with the projection of the precise locating earthquake results, it is found that Longmenshan fault zone in the upper crust shows obvious segmentation, both Wenchuan and Lushan earthquake occurred in the high density side of the density gradient zone. Wenchuan earthquake and its aftershocks are mainly distributed in the west of central Longmenshan fault zone. In the south of Maoxian-Beichuan, its aftershocks occurred in high density area and the majority of them are thrust earthquake. In the north of Maoxian-Beichuan, its aftershocks occurred in the low density area and the majority of them are strike-slip earthquake. The Lushan earthquake and its aftershocks are concentrated near the gradient zone of crustal density and tend to the side of the high density zone. The aftershocks of Lushan earthquake ended at the edge of low-density zone which is in EW direction in the north Baoxing. The leading edge of Sichuan Basin, which has high density in the lower crust, expands toward the Qinghai-Tibet Plateau with the increase of depth, and is close to the west of the Longmenshan fault zone at the top of upper mantle. Our results show that there are a lot of low density bodies in the middle and lower crust of Songpan-Ganzê Block. With the increase of the depth, the low density bodies are moving to the south and its direction changed. This phenomenon shows that the depth and surface structure of Songpan-Ganzê Block are not consistent, suggesting that the crust and upper mantle are decoupled. Although a certain scale of low-density bodies are distributed in the middle and lower crust of Songpan-Ganzê, their connectivity is poor. There are some low-density anomalies in the floor plan. It is hard to give clear evidence to prove whether the lower crust flow exists.  相似文献   

17.
2008汶川Ms8.0地震发生的深层过程和动力学响应   总被引:1,自引:0,他引:1       下载免费PDF全文
汶川Ms8.0强烈地震发生在一条现今并不活动的龙门山构造带上,造成了以汶川、映秀为中心及其周边地域的严重破坏和人员的重大伤亡.然而强烈震发生前却未见有可能的确切征兆或浅表层异常活动,即浅层过程与地震发生的深层过程并不匹配.为此对这次强烈地震“孕育”、发生和发展的深层过程进行了分析和探讨,初步研究表明:①在印度洋板块与欧亚板块陆—陆碰撞、挤压作用下,喜马拉雅造山带东构造结向NNE方向顶挤、楔入青藏高原东北缘,迫使高原深部物质向东流展,在受到以龙门山为西北边界的四川盆地阻隔下,一部分物质则转而向东南侧向运移;②龙门山地带在地形上差达3500±500 m左右,而地壳厚度在龙门山西北部为60±5 km左右,四川盆地为40±2 km左右,而龙门山地带与其东、西两侧相比则为地壳厚度变化幅度达15~20 km的突变地域,即为应力作用的耦合地带;③中、下地壳和地幔盖层物质以地壳低速层、低阻层(深20~25 km)为第一滑移面,以上地幔软流层顶面为第二滑移面,且在四川盆地深部“刚性”物质阻 隔下,深部壳、幔物质以高角度在龙门山构造带和四川盆地的耦合地带向上运移(或称逆冲),且在龙门山地表三条断裂构成的断裂系向下延伸到20 km左右深处汇聚,二者强烈碰撞、挤压、震源介质破裂;在物质与能量的强烈交换下,应力得到释放,故形成了这次Ms.0强烈地震.为此从深部初步揭示了这次强烈地震“孕育”、发生和发展的深层动力过程.  相似文献   

18.
Located on the east boundary of Qinghai-Xizang (Tibet) Plateau, the M_S8.0 Wenchuan earthquake is the strongest event to hit the active block since the 2001 Kunlun Mountains Pass earthquake. In this study, a simplified source model of the Wenchuan earthquake is constructed based on the deep/shallow tectonic settings and crust/mantle structure features of the Longmenshan thrust fault zone. On the basis of dynamic model abstraction, we construct a system of dynamical equations for the seismogenic process and obtain the analytical expressions of stress and strain in the seismogenic process. A preliminary study of the seismogenic process of the M_S8.0 Wenchuan earthquake, based on the analytical solution of the model and observation of tectonic deformation in the Longmenshan region, indicates that the seismogenic process of the Wenchuan earthquake took place over a period of more than 3200 years. The slow process of seismogeny and the long recurrence period of strong earthquakes are attributed to the low deformation rate of the Longmenshan tectonic zone.  相似文献   

19.
基于双差层析成像的时移层析成像方法能够获得不同时间段之间的地下介质的速度变化,且不同的数据分布和质量对结果影响较小.在本研究中我们使用云南地震区域台网所记录到的P波绝对到时及相对到时数据,利用时移层析成像方法得到了2014年鲁甸M S6.5地震发生前后震源区高精度的P波速度变化的时空分布.结果表明:2014年鲁甸地震发生后,震源区同震期P波速度下降,但没有下降至最大,而是在震后1—4个月内下降至最大,接着P波速度开始上升,震源区开始愈合,愈合过程从浅层逐渐发展至深层,逐渐恢复至震前水平.同时发现在空间上P波速度变化与余震分布变化相一致,鲁甸地震同震应力变化与速度变化之间也有较好的一致性,所以认为地震引起的应力变化是造成鲁甸地震速度变化的一个重要原因,余震的动态和静态应力造成了震源区介质物理属性的改变从而影响了P波速度的变化.  相似文献   

20.
四川地区地质构造复杂,地壳活动剧烈,为了深入揭示该区“Y”型构造区地壳1999年以来近20年的动态演化规律,基于1999—2017年7期GPS数据,解算各周期网格速度场、应变率场,研究地壳应变场演化过程。结果表明:①2008年以前的3期GPS速度场相对稳定,汶川地震后,速度场变化最大的龙门山断裂带由4.0—5.0 mm/a增至8.0—10.0 mm/a;②汶川震后,“Y”型构造区最大剪应变高值区出现在汶川以东,由2.0×10-8/a增到22.0×10-8/a;龙门山断裂带以SE或SEE向主压应变为主,变化速率约5.0×10-8/a—12.0×10-8/a,鲜水河断裂由震前NS向主拉应变转为震后EW向主压应变,安宁河断裂东侧由震前SE向主压应变6.0×10-8/a减至震后的2.0×10-8/a;面膨胀结果显示,由震前低密度梯度带瞬间变为平行于龙门山断裂带走向的高密度变化区,且存在以金川至都江堰、北川至青川为条带的2个正负交替过渡区;③汶川地震发生压应力释放后,该区SEE向压性特征又逐渐增强,且持续至2017年,释放了龙门山断裂带地壳内部SEE向压应力多年累积能量,但汶川地震对鲜水河断裂与安宁河断裂的整体运动状态则无明显触发作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号