首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 681 毫秒
1.
Steel jacket-type platforms are the common kind of the offshore structures and health monitoring is an important issue in their safety assessment.In the present study,a new damage detection method is adopted for this kind of structures and inspected experimentally by use of a laboratory model.The method is investigated for developing the robust damage detection technique which is less sensitive to both measurement and analytical model uncertainties.For this purpose,incorporation of the artificial immune system with weighted attributes(AISWA) method into finite element(FE) model updating is proposed and compared with other methods for exploring its effectiveness in damage identification.Based on mimicking immune recognition,noise simulation and attributes weighting,the method offers important advantages and has high success rates.Therefore,it is proposed as a suitable method for the detection of the failures in the large civil engineering structures with complicated structural geometry,such as the considered case study.  相似文献   

2.
This documentation presents the parametric identification modeling of ship maneuvering motion with integral sample structure for identification (ISSI) and Euler sample structure for identification (ESSI) based on least square support vector machines (LS-SVM), where ISSI is used for the construction of in–out sample pairs. By using Mariner Class Vessel, the sample dataset are obtained from 15°/15° zigzag maneuvering simulation based on Abkowitz model. By analyzing the simulation data including rudder angle, surge velocity, sway velocity, yaw rate and so forth, the hydrodynamic derivatives in Abkowitz model are all identified. The validation of the proposed identification algorithm is verified by the high precisions of the identified hydrodynamic derivatives and maneuvering prediction results. The comparison is also conducted between the proposed ISSI and the conventional Euler sample structure for identification (ESSI), and the experimental results shows that ISSI is much more appropriate for parametric identification modeling of ship maneuvering motion.  相似文献   

3.
利用最小二乘向量机(LS-SVM)算法构造海底趋势面的过程中,由于算法解缺乏稀疏性,使得异常测深训练样本对最终构造的函数模型也产生影响。为了解决该问题,在对留一样本交叉检核法研究的基础上提出了LS-SVM稀疏算法,由于留一样本交叉检核法求解的残差序列可以有效地表示函数预测值偏离实际水深的程度,因此利用该原则重新修剪后的样本数据不仅使算法具有稀疏特性,而且构造的函数模型更合理。为了检验算法的有效性,选取实测的多波束测深数据进行验证,计算结果表明留一样本交叉检核法能够合理地筛选出对函数模型构造贡献程度大的测深训练样本,使得构造的函数模型更合理。  相似文献   

4.
A generic integrated sensory-intelligent system (ISIS) is developed for underwater acoustic signal-processing applications. ISIS constantly monitors the current acoustic channel conditions and smoothly integrates the outputs of the most appropriate signal-processing procedures or algorithms available to it for those conditions. The system is based on a generalization of a tuneable approximate piecewise linear (TAPL) model derived from the modified probabilistic neural network (MPNN). This model was designed to seamlessly integrate a set of local linear signal-processing algorithms within a given multidimensional data space. Depending on the input signal distortions, which are determined by environmental effects, ISIS automatically weighs and adds the outputs from a set of processing algorithms working in parallel. The weighting is related to the "closeness" of each algorithm to the sensed input signal characteristics or some other measured environmental state. A single tuning parameter is used to smoothly and seamlessly select appropriately among the parallel processing algorithm outputs. A very small tuning-parameter value selects the closest most appropriate algorithm output. At the other extreme, a fixed weighted average of all the algorithm outputs is produced with a very large value. Otherwise, a dynamic weighed average of all algorithm outputs is achieved with values in between. Some features and benefits of ISIS are demonstrated with an illustrative linear sweep chirp signal-detector estimation problem characterized by extremely variable Doppler conditions.  相似文献   

5.
This study proposes a new methodology for mosaicing airborne light detection and ranging (LiDAR) bathymetry (ALB) data based on Monte Carlo matching. Various errors occur in ALB data due to imperfect system integration and other interference factors. To account for these errors, a Monte Carlo matching algorithm based on a nonlinear least-squares adjustment model is proposed. First, the raw data of strip overlap areas were filtered according to their relative drift of depths. Second, a Monte Carlo model and nonlinear least-squares adjustment model were combined to obtain seven transformation parameters. Then, the multibeam bathymetric data were used to correct the initial strip during strip mosaicing. Finally, to evaluate the proposed method, the experimental results were compared with the results of the Iterative Closest Points (ICP) and three-dimensional Normal Distributions Transform (3D-NDT) algorithms. The results demonstrate that the algorithm proposed in this study is more robust and effective. When the quality of the raw data is poor, the Monte Carlo matching algorithm can still achieve centimeter-level accuracy for overlapping areas, which meets the accuracy of bathymetry required by IHO Standards for Hydrographic Surveys Special Publication No.44.  相似文献   

6.
胡娜  张晓林 《海洋测绘》2008,28(2):24-28
分析了伽利略搜救系统的地面站定位模型。提出了一种适用于该系统的,在存在多余观测的情况下,基于信号的时间延迟和多普勒频率测量值加权后,共同参与平差计算的联合定位算法模型及其误差分布模型。仿真结果表明,与单纯使用一种观测值的定位算法相比,该算法可以提高定位精度,是一种适合伽利略搜救地面站使用的定位算法。  相似文献   

7.
Current trends of development of satellite derived bathymetry (SDB) models rely on applying calibration techniques including analytical approaches, neuro-fuzzy systems, regression optimization and others. In most of the cases, the SDB models are calibrated and verified for test sites, that provide favorable conditions for the remote derivation of bathymetry such as high water clarity, homogenous bottom type, low amount of sediment in the water and other factors. In this paper, a novel 3-dimensional geographical weighted regression (3GWR) SDB technique is presented, it binds together methods already presented in other studies, the geographically weighted local regression (GWR) model, with depth dependent inverse optimization. The proposed SDB model was calibrated and verified on a relatively difficult test site of the South Baltic near-shore areas with the use of multispectral observations acquired by a recently launched Sentinel-2 satellite observation system. By conducted experiments, it was shown that the proposed SDB model is capable of obtaining satisfactory results of RMSE ranging from 0.88 to 1.23[m] depending on the observation and can derive bathymetry for depths up to 12m. It was also shown, that the proposed approach may be used operationally, for instance, in the continuous assessment of temporal bathymetry changes, for areas important in the context of ensuring local maritime safety.  相似文献   

8.
This paper proposes an improved version of Unscented Kalman Filter (UKF), namely Robust Adaptive UKF (RAUKF), with a special focus on Bearings-Only Target Tracking for three-dimensional case (3DBOT). The automatic tuning of the noise covariance matrices and the robust estimation of the target states form a critical point for the performance of the Kalman-type filtering algorithms, especially in the variable environmental conditions exposed in underwater. The key idea of the proposed filter is to combine robust aspects of UKF and adaption of the process and measurement noise covariance matrices with low computational complexity. The main contribution of this paper is to adjust these matrices by means of the steepest descent algorithm, and the H technique is embedded to achieve superior performance in terms of accuracy and robustness against initial conditions and model uncertainties. Different experiments are performed to evaluate the performance of the proposed algorithm in the 3DBOT problem with a single moving observer. Simulations demonstrate that the proposed filter produce more accurate results with satisfactory computational burden in comparison with other methods.  相似文献   

9.
To address the limitations of manually selecting aids to navigation (AtNs) on charts, a method for automatically selecting AtNs based on their spatial influence domains (SIDs) is proposed. First, the associations between the spatial attributes of an AtN are analyzed. Second, an SID of the AtN is defined, and a model of the SID is constructed based on the associations between the spatial attributes. Third, the importance of the location of the AtN is weighted based on the SID model. Fourth, an algorithm to automatically select AtNs based on the maximum coverage of the SIDS of preselected AtNs is developed. Finally, several AtNs are selected automatically using the algorithm. The experimental results demonstrate that (1) the proposed method can automatically select AtNs and the results comply with the requirements; (2) the automatic selection can eliminate the human-induced errors or the inconsistent results of manual selections from different operators; and (3) the efficiency of the proposed method is higher than that of current manual methods.  相似文献   

10.
The development of robust techniques for early damage detection for offshore structures is crucial to avoid the possible catastrophe caused by structural failures. This article applies the cross-model cross-mode (CMCM) method for damage detection that is capable of identifying the damage to individual members of offshore jacket platforms, when limited, spatially incomplete modal data is available. Basically, the CMCM method is classified as a direct, physical property adjustment model updating method. Implementing this method requires only a few modes measured from the damaged structure. In dealing with spatial incompleteness, this paper investigates both model reduction and modal expansion techniques. Specifically, either Guyan (static condensation) or SEREP (system equivalent reduction expansion process) transformation matrix, between the master and slave degrees-of-freedom, is employed in the model reduction or modal expansion process. One theoretical development is an iterative procedure to compute the transformation matrix associated with the (unknown) damaged structure. Numerical studies are conducted for a jacket platform with multiple damaged members based on synthetic data generated from finite-element models. The results suggest that (i) Guyan scheme always outperforms SEREP, (ii) model reduction is always better than modal expansion, and (iii) the CMCM method in conjunction with iterative Guyan reduction approach yields the best damage location and severity estimate.  相似文献   

11.
A new adaptive Cartesian-grid for the CIP (constrained interpolation profile) method is proposed and applied to two-dimensional numerical simulations of violent free-surface flows. The CCUP (CIP combined and unified procedure) method is employed and combined with this adaptive Cartesian-grid for robust and efficient computation. This adaptive grid is capable of tracking regions where flows vary violently, and a much finer grid is then concentrated automatically on these regions to adapt to the violent changing of the flow. Unlike the abacus-like Soroban grid which is an adaptive meshless grid with complicated algorithms and inefficiency of evaluation of frequently computed spatial derivatives, the present approach not only simplifies computational algorithm but also enhances efficiency of frequently-computed spatial derivatives. It is also different from most of the remeshing schemes that no additional CPU-time for the value-mapping from the old grid to the new grid is taken in this adaptive grid system provided that the advection velocity is interpolated, since the value-mapping process is accomplished simultaneously within the advection process. To validate the accuracy and efficiency of this newly-proposed CFD model, several two-dimensional benchmark problems are performed, and the results are compared with experimental measurements and other published numerical results. Numerical simulations show that the proposed numerical model is robust, accurate, and efficient for strongly nonlinear free-surface flows.  相似文献   

12.
利用多光谱卫星遥感影像反演浅海水深是水深测量的一种重要方式。提出一种基于主成分分析的地理加权回归模型(PCA-GWR),采用WorldView-2多光谱卫星遥感影像数据,对经过数学变换后的波段反射率数据先进行主成分分析,将得到第一主成分量进行地理加权回归分析,并与双波段比值模型、多波段线性模型和地理加权回归模型(GWR)的水深反演结果进行比较。结果显示,各个反演模型反演水深值与实测水深值的相关系数r均大于0.75,其中PCA-GWR模型水深反演结果最好,r为0.96、RMSE为1.56 m、MAE为1.06 m。研究表明,PCA-GWR模型可有效去除数据变换后的冗余信息,降低数据空间非平稳性,具有较高的反演精度与可靠性,适用于浅海水深反演。  相似文献   

13.
构建高精度高分辨率的海域重力异常模型,是将海洋重力测量数据应用于全球高程基准统一和水下重力匹配导航等技术领域的关键步骤之一。针对反距离加权插值算法仅利用了海域重力观测值的空间信息,没有考虑重力观测值物理特性的缺陷,提出一种借助EGM2008重力场模型构建海域重力异常模型的反距离插值算法。以DTU10重力异常数值模型为基础数据,设计了海域重力测量数据格网化实验,结果表明本文算法能有效改进海域重力异常格网模型的计算精度。  相似文献   

14.
Development of efficient global damage detection techniques for offshore structures is of great importance. The present paper applies the iterative modal strain energy (IMSE) method to locate and quantify the damage for three dimensional frame structures, when limited, spatially incomplete modal data are available. One theoretical development is a new procedure to directly incorporate the spatially-incomplete mode shapes in the algorithm, where slave degrees of freedom iterative updating procedure (SDUP) is developed for evaluating the damage indicator and damage severity. The merits of this new method are that both the modal frequencies and spatially incomplete mode shapes can be used. Also, the modal frequencies do not need to pair the mode shapes one by one. To demonstrate the feasibility and effectiveness of the developed algorithm, numerical studies are conducted for a 3D offshore platform based on data generated from finite element models. Numerical results demonstrate that the present method is effective for the damage assessment of a 3D frame structures when limited, spatially incomplete modal data are available. After considering more practical factors, it is expected to be more applicable in structural damage assessment.  相似文献   

15.
卫星影像是监测海面漂浮绿藻的重要数据源, 但是混合像元的存在使得绿藻提取存在一定的误差。想要实现近海区域底栖绿藻的精细监测, 需要解决绿藻亚像素覆盖度的问题。本文以厘米级分辨率无人机数据的绿藻提取结果为基准, 通过分析Landsat卫星影像绿藻光谱, 建立绿藻亚像素覆盖度与多种植被指数和多个特征波段反射率的反演模型。结果表明, 蓝、绿、红波段反射率与绿藻亚像素覆盖度呈现较好的线性关系, 随着绿藻亚像素覆盖度递增, 蓝、绿、红波段反射率的值均递减。将蓝、绿、红波段的三种绿藻亚像素覆盖模型进行验证, 发现绿波段反射率所建立的反演模型具有更高的准确性, 决定系数、均方根误差、平均相对误差分别为0.92%、0.07%、10.85%。本文所建立的模型可以估算大型绿藻亚像素覆盖度, 实现Landsat卫星影像对大型绿藻的精细监测。  相似文献   

16.
17.
Hsin-Hung Chen 《Ocean Engineering》2008,35(14-15):1448-1462
Positioning accuracy of an ultra short baseline (USBL) tracking system is significantly reduced with the increase of alignment errors in the installation of sensors. Although techniques for sensor alignment calibration have been developed, they are either complex or lacking in rigor. This study proposes an algorithm to estimate the angular misalignments of a USBL transceiver relative to attitude sensors. The numerical algorithm is based on the positioning errors caused by heading, pitch, and roll misalignments, respectively, when running a circular survey around a seabed transponder. The positioning errors introduced by the angular misalignments outline an iterative scheme of estimating the roll alignment error first, next the heading alignment error, and then finally the pitch alignment error. This makes possible the efficient estimation of all angular misalignments with a high degree of accuracy. With the consideration of measurement error and executing a non-centered and non-perfect circle around the true transponder position, numerical simulations are performed to validate the effectiveness of the proposed algorithm. The simulation results show that the proposed algorithm is robust to the effects of measurement error, non-centered circles, and non-perfect circles. Moreover, the estimates converge fairly quickly, and can be achieved with good accuracy in only a few iterations.  相似文献   

18.
高频地波雷达是海洋环境监测的重要手段,当前已经实现对海流的业务化观测,但是外部因素常引起海流空间探测的不连续性。为解决此问题,尽量保障区域数据的完整性和准确性,本文将BP神经网络技术与空间插值相结合,建立了海流的BP神经网络插值模型,并进行了针对实测数据的缺失插值仿真,通过与反距离权重法和线性插值法插值结果的对比,分析该模型在区域海流大面积缺失、流速整体较大和流速整体较小3个方面的性能。结果表明,BP神经网络插值模型的海流预测效果明显优于其他两种方法,且在流场数据大范围缺失下也取得了良好的效果。  相似文献   

19.
利用栖息地适宜指数分析秘鲁外海茎柔鱼渔场分布   总被引:16,自引:4,他引:12  
根据2003—2007年秘鲁外海茎柔鱼渔获数据以及海洋环境数据[表温(SST),表温水平梯度、表层盐度(SSS)、海面高度(SSH)、叶绿素(Chl-a)浓度],利用主成分分析法确定各环境因子的权重,分别采用权重求和法和几何平均法进行栖息地适宜指数(HSI)建模分析,选择最优模型进行实证分析,结果表明,权重最高的环境因子为SST,最小的为Chl-a浓度。HSI值较高的海区一般位于200海里专属经济区外附近海域。经统计比较,用权重求和法计算所得HSI值好于几何平均法。利用2008年茎柔鱼生产数据进行实证分析,产量和作业次数随HSI值升高而增加,权重求和法的HSI模型可用于茎柔鱼渔场的实时动态预报。分析还显示,HSI分布情况与研究海域的的海洋环境密切相关,HSI不小于0.8的海区一般处在水团交汇处。  相似文献   

20.
根据2003—2007年秘鲁外海茎柔鱼渔获数据以及海洋环境数据 ,利用主成分分析法确定各环境因子的权重,分别采用权重求和法和几何平均法进行栖息地适宜指数(HSI)建模分析,选择最优模型进行实证分析,结果表明,权重最高的环境因子为SST,最小的为Chl-a浓度。HSI值较高的海区一般位于200海里专属经济区外附近海域。经统计比较,用权重求和法计算所得HSI值好于几何平均法。利用2008年茎柔鱼生产数据进行实证分析,产量和作业次数随HSI值升高而增加,权重求和法的HSI模型可用于茎柔鱼渔场的实时动态预报。分析还显示, HSI分布情况与研究海域的的海洋环境密切相关,HSI不小于0.8的海区一般处在水团交汇处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号