首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 634 毫秒
1.
ECOMSED模式在杭州湾海域流场模拟中的应用   总被引:13,自引:0,他引:13       下载免费PDF全文
针对杭州湾独特的喇叭型强潮河口湾的特点,基于Blumberg等(1996)的ECOMSED模式,引入动边界技术,建立杭州湾三维动边界的潮流模型.模型以正交曲线坐标下三维非线性水动力方程为基本方程,应用Mellor和Yamada的2.5阶湍流闭合模型计算紊动黏滞系数,嵌入Grant和Madsen的底边界层模型考虑波浪对底部应力的作用,采用干湿网格法模拟潮流漫滩过程;综合考虑径流,风应力,密度流和M2,S2,K1,O1四个主要分潮和M4,S4,MS4三个浅水分潮的作用,从而提高杭州湾潮流模拟的精度.通过验潮站调和常数和多次海流连续观测资料的验证,表明该文建立的模型可以更好的用于杭州湾流场的预报模拟.  相似文献   

2.
非线性波浪时域计算的三维耦合模型   总被引:3,自引:1,他引:2  
将计算区域Ω划分为内域Ω1和外域Ω22=Ω-Ω1),外域控制方程采用改进线性频散特性的二维Boussinesq方程,用预报一校正法数值求解;结构物附近的内域控制方程为三维Navier-Stokes方程,由VOF方法数值求解。通过在外域和内域相匹配的交界面上设置合适的速度和波面边界条件,建立了三维非线性波浪时域计算的耦合模型。模拟试验表明:(1)耦合模型数值波浪水池可以产生稳定的、重复性较好的波动过程;(2)用耦合模型数值波浪水池求解较大浅水区域上的非线性波浪数值计算问题可以取得较高的计算效率,同时又能得出结构物附近的复杂流场。  相似文献   

3.
浙江近海潮汐潮流的数值模拟   总被引:6,自引:2,他引:6       下载免费PDF全文
用三维陆架海模式(HAMSOM)对浙江近海的潮汐、潮流进行了数值模拟,并采用网格嵌套和动边界技术对原模式作了改进,以提高计算的精度,改进后的模式在浙江近海的应用中被证明是成功的.沿岸50个潮位站计算与实测值的比较表明,加入动边界以后的小区域细网格计算较之粗网格以及未加动边界以前精度普遍提高,比较的均方差结果为:M2分潮振幅差4.6cm,相角差7.14°;S2分潮振幅差5.0cm,相角差5.4°;K1分潮振幅差2.25cm,相角差5.76°;O1分潮振幅差1.56cm,相角差5.5°,可见计算与实测符合良好.另外,选取了105个实测潮流点,比较了表层M2和K1分潮流调和常数分量Ucosξ,Usinξ,Vcosη,Vsinη的实测值与计算值的偏差,结果表明计算与实测的符合程度较好.在此基础上,给出了各主要分潮的潮位同潮图、潮流同潮图、潮汐性质、潮流性质、潮流椭圆和潮流的运动形式等,发现4个主要分潮M2,S2,K1,O1在本区内均未出现无潮点;M2分潮流在29°18'N,122°46'E处有一个圆流点.此外还得到了一些有意义的结论,都与实测情况符合良好,从而对整个浙江沿海区域的潮汐潮流特性有了一个全面认识.  相似文献   

4.
渤海三维潮流数值模拟   总被引:11,自引:2,他引:11  
本模型以具有自由面的三维非线性Navier-Stokes方程为基本方程,经σ坐标变换得到模式方程。基于过程分裂法,将三维流动中的快过程与慢过程劈开,并对每部分选用适合其物理特性和数值行为的计算格式,然后耦联求解。 应用本模型详细计算了渤海的三维潮运动。其中,潮波系统模拟获得理想的结果;采用十层模式计算了M_2潮流,以较高的分辨率揭示了潮流的空间结构特征。最后本文给出了三维潮流预报的应用实例。  相似文献   

5.
渤海三维潮流数值模拟   总被引:17,自引:5,他引:17  
本模型以具有自由面的三维非线性Navier-Srokes方程为基本方程,经σ坐标变换得到模式方程。基于过程分裂法,将三维流动中的快过程与慢过程劈开,并对每部分选用适合其物理特性和数值行为的计算格式,然后耦联求解。应用本模型详细计算了渤海的三维潮运动。其中,潮波系统模拟获得理想的结果;采用十层模式计算了M2潮流,以较高的辨率揭示了潮流的空间结构特征。最后本文给出了三维潮流预报的应用实例。  相似文献   

6.
基于FVCOM的廉州湾及周边海域三维潮汐潮流数值模拟   总被引:1,自引:0,他引:1  
基于采用不规则三角网格和有限体积方法的FVCOM模式,建立廉州湾三维潮流数值模型来重现廉州湾及周边海域的潮位和潮流变化状况。根据模拟结果计算得到了较以往更为精细的廉州湾及周边海域K1、O1和M2分潮的同潮图,并计算了由此3个分潮引起的潮汐不对称的变化情况。K1和O1分潮在廉州湾外主要以驻波的形式存在,进入廉州湾后转化为前进波;M2分潮在廉州湾外主要以前进波的形式存在,进入廉州湾后前进波特征更为明显。K1和O1分潮流在廉州湾外以旋转流为主,在廉州湾内以往复流为主;M2分潮流在整个研究海域以往复流为主。由潮余流场的分布特点可以看出自南向北由外海进入廉州湾的潮余流,在冠头岭处分为两支,一支逆时针转向西,另一支被冠头岭阻挡在其南侧形成顺时针封闭环流。在廉州湾内部同时存在2个环流系统,湾顶的气旋式环流和口门处的反气旋式环流。  相似文献   

7.
杭州湾和钱塘江潮波的联合数值模型   总被引:6,自引:2,他引:6       下载免费PDF全文
曹德明  方国洪 《海洋学报》1988,10(5):521-530
本文应用有限差分法,对杭州湾采用二维模型,对钱塘江采用一维模型进行了潮波联合数值计算,得到了全日((O1+K1)/2)、半日(M2)和浅水(M4)分潮的调和常数,计算结果比单纯的二维模型结果更符合杭州湾潮汐潮流的实际情况,并得出了关于余水位和余流的更可信的结果。  相似文献   

8.
南海潮汐潮流的数值模拟   总被引:31,自引:2,他引:31  
本文用二维球坐标数值模式计算了南海m1[=(K1+O1)/2]和M2分潮的分布.计算范围从2°N到25°N,99°E到121°30'E,坐标的经向纬向、格距均为1°/4.计算结果与92个实测站进行比较符合良好,m1分潮振幅的平均误差为4cm,迟角为7°.M2分潮振幅的平均误差为9cm,迟角为12°.根据计算结果给出南海m1和M2分潮的潮汐、潮流、潮余流和潮能通量分布图.  相似文献   

9.
海岸三维潮流数学模型的研究及应用   总被引:4,自引:0,他引:4  
白玉川 《海洋学报》1998,20(6):87-100
本模型以三维Navier-Stokes方程为基础,经σ-坐标变换得模式方程,然后选用特殊的插值函数,利用有限元和差分相结合的方法求解.所建模型可适应具有较为复杂岸线和海工建筑的海域潮流计算,可进行局部加密,同时能以较高分辨率揭示三维潮流的空间结构特征.本潮流模型具有省时、简便的特点.  相似文献   

10.
北部湾潮汐潮流的三维数值模拟   总被引:9,自引:1,他引:9  
基于二阶湍流闭合模型计算涡动粘性系数的POM三维水动力模式,采用细网格,考虑6个岛屿、海底摩擦系数进行划片取值,模拟北部湾潮汐潮流.所得潮汐调和常数与81个实测站比较,绝对平均误差:K1分潮振幅为46cm,迟角为9°;O1分潮振幅为56cm,迟角为7°;M2分潮振幅为62cm,迟角为15°.由模拟结果分析出该海区潮汐、潮流、余水位和潮余流,以及水平速度垂直分布等特征.  相似文献   

11.
台湾海峡潮汐和潮流的一个数值模型   总被引:11,自引:2,他引:11       下载免费PDF全文
本文根据二维非线性流体动力学方程,用有限差分方法同时计算了台湾海峡的半日和全日潮波,所得结果与观测值基本符合,半日潮相当大,M2潮汐振幅在海峡西北角最大,超过2米,M2最强潮流出现在台湾浅滩及澎湖列岛附近,可超过1米/秒,全日潮弱且变化较小,K1和O1平均潮汐振幅在0.2至0.3米间,平均潮流振幅大多在0.05至0.1米/秒,文章对四分日潮及潮汐余水位的分布也作了简述,在海峡西南端的靖海角附近四分日潮有一定相对重要性。  相似文献   

12.
胶州湾潮汐潮流动边界数值模拟   总被引:11,自引:4,他引:7       下载免费PDF全文
基于普林斯顿海洋模式,通过干湿网格判别法引入潮汐潮流的漫滩过程,考虑M2,S2,K1,O1,M4和MS4六个主要分潮,建立了胶州湾潮汐潮流数值模拟和预报模型,研究了该海域潮汐潮流特征,并讨论了漫滩对潮流模拟的影响。与实测资料的对比验证表明,该模式能够对胶州湾的潮汐和潮流做出较为合理的预测。给出了胶州湾潮汐、潮流、余流等分布特征,模拟的潮流场以及余流场涡旋等现象与观测符合良好;计算了潮波能通量,从能量角度探讨了潮波的传播特性;对潮位与潮流场演变规律,以及潮能通量的分析表明,胶州湾内的潮波以驻波为主。通过数值试验发现,漫滩过程的引入对胶州湾潮流速度的模拟至关重要,不考虑漫滩过程的模式会夸大或者低估潮流流速。对于滩涂面积广阔的海域来说,潮流数值模式中考虑漫滩的影响是必要的。  相似文献   

13.
文章以具有自由表面的三维非线性Navier-Stokes方程组为基本控制方程,垂向采用σ坐标变换后得到三维浅海湍流数学模型。数值模拟求解方法采用具有自动迎风、精度高及稳定性好的混合有限分析法求解,最后,以渤海湾潮流模拟算例验证了文中模型及其混合有限分析解法模拟潮流的正确性和应用于工程实际问题的适用性。  相似文献   

14.
渤海潮汐及大风作用下水位的数值模拟   总被引:1,自引:0,他引:1  
张延廷  王以娇 《海洋学报》1989,11(6):701-707
本文以M2,S2,K1及O1 4个主要分潮之和为开边界条件,用“ADI”法对渤海的潮位和潮流进行了数值模拟。潮位和潮流的计算值与潮汐表的预报值(或无风情况下的实测值)比较吻合。在潮汐模拟的基础上,还进行了大风影响下水位场和流场的数值模拟,亦获得了比较满意的结果。  相似文献   

15.
渤、黄、东海潮汐潮流的数值模拟   总被引:61,自引:9,他引:61  
利用球坐标系中的二维非线性潮波方程组,数值计算了渤、黄、东海全海区的全日及半日潮汐潮流。沿岸81个潮位站的计算与实测值的比较表明,M2分潮振幅差平均为7.2cm,相角差为6.4°,m1分潮振幅差平均为2.6cm,相角差为7.4°,计算与实测符合良好。潮流的比较结果表明,计算与实测的符合程度也是比较好的。文中给出的同潮图同Fang(1986)给出的实测与数值的综合结果基本一致。本计算还证实或首次给出了若干圆流点。如对M2分潮流,证实了在北黄海山东北部近海及南黄海北部各存在一对圆流点,并在浙江北部近海新发现一对圆流点;对m1分潮流在苏北浅滩外侧发现一个圆流点,另外在东海东北部(济州岛东南)新给出两个圆流点,东海东南部的弱流区存在三个圆流点,此外,文中还分别讨论了M2及m1分潮能通量的传播和消耗情况,并指出从太平洋经吐噶喇海峡及冲绳至宫古岛之间的水道传入东海的m1分潮,在遇到陆坡的阻挡后,其中有相当部分潮能被反射回太平洋。  相似文献   

16.
邹志利  金红 《海洋工程》2012,30(2):38-45
建立具有色散性的水平二维非线性波浪方程,方程的非线性近似到了三阶。方程以波面升高和自由表面速度势表达的微分-积分型数学方程,给出方程的数值求解方法和算例,对方程积分项的处理给出了计算方法。计算结果与Boussinesq方程模型和缓坡方程模型的对应计算结果进行了对比。  相似文献   

17.
本文通过建立一维水深平均悬沙模型,对典型潮流控制的水道内悬沙运动特征进行研究。模型以泥沙再悬浮、沉降和平流为主要物理过程,动力因素包含M2、S2分潮及余流,采用湄洲湾2007年8月潮位、潮流、悬沙、底质同步观测资料进行分析和验证。通过三角傅里叶分析,将悬沙的时间序列分解为12个主要的谐波分量,其中主要分量包括:M2分潮作用下产生的具有M2倍潮角速度的1/4日分潮项,M2与S2分潮共同作用下且角速度为两分潮角速度之和的1/4日分潮项,及水平悬沙梯度、余流与M2分潮共同作用下具有M2分潮角速度的半日潮项。悬沙在时间上的平均值受到余流、悬沙水平梯度、M2分潮流及悬沙起动条件等因素控制。余流导致了悬沙序列中相邻周期之间的不对称性。反映泥沙特性的参量对悬沙的曲线特征具有重要影响,泥沙沉降速度影响悬沙的相位,并影响其振幅;再悬浮有关的参量仅影响各谐波分量的振幅,但不影响相位。  相似文献   

18.
高宇  李爽  郝鹏  宋金宝 《海洋与湖沼》2023,54(6):1573-1585
海表面二氧化碳分压(pCO2)的未来变化趋势,对统计评估全球碳收支以及理解全球气候变化背景下的海洋酸化现象至关重要。目前传统的海面pCO2预测方法大部分基于有限的实测数据,然而实测数据存在着时间和地理方面的制约,且计算成本较高。近年来,随着时空观测数据的爆炸性增长,基于深度学习的数据驱动模型在海表面pCO2预测方面中表现出良好的潜力。然而,由于多种环境因素与海表面pCO2之间的关系错综复杂,到目前为止尚无十分简单有效的相关模型来对海表面pCO2进行预测。为应对这一挑战,利用时空卷积长短时记忆神经网络(ST-ConvLSTM)模型,通过海面温度(sea surface temperature, SST)、海面盐度(sea surface salinity, SSS)、叶绿素a浓度(chl a)和海面pCO2数据,预测南海的海面pCO2,并将2019年1~12月的数据作为测试集对模型的表现进行了验证。结果显示, ST-ConvLSTM模型...  相似文献   

19.
吴乃华 《海洋学报》1991,13(6):741-752
本文考虑到中国沿岸存在较强非线性潮的事实,对Zetler提出的计算辐射分潮S2的方法作了重要改进,消除了主要半日潮中的非线性分潮的影响,并采用这一方法,利用长期资料的调和分析结果计算了中国沿岸42个站的辐射分潮S2作为比较,同时给出了Zetler方法的计算结果.此外还用响应法计算了其中10个站的辐射分潮S2.计算结果表明,在中国沿岸辐射分潮S2与引力分潮S2的平均振幅比为0.17,平均迟角差为119°.  相似文献   

20.
本文使用二维非线性模式作了长江口海域潮流场数值模拟,该海域系半日潮为主,故仅考虑M2和S2两个主要分潮,时间步长为310秒,空间步长为5海里,计算和现场观测值拟合得很好,分析1/12T—T的整个潮流场表明,存在两个不同的潮流系统,即外海(122°E以外)的顺时针向潮流和长江口门附近的往复潮流(122°E以内),涨潮流历时小于落潮.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号