首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Double difference relocations of the 1402 Kachchh events (2001–2006) clearly delineate two fault zones viz. south-dipping North Wagad fault (NWF) and almost vertical Gedi fault (GF). The relocated focal depths delineate a marked variation of 4 and 7 km in the brittle-ductile transition depths beneath GF and NWF, respectively. The focal mechanism solutions of 464 aftershocks (using 8–12 first motions) show that the focal mechanisms ranged between pure reverse and pure strike-slip except for a few pure dip-slip solutions. The stress inversions performed for five rectangular zones across the Kachchh rift reveal both clockwise and anticlockwise rotation (7–32°) in the σ1 orientation within the rupture zone, favoring a heterogeneous stress regime with an average N-S fault normal compression. This rotation may be attributed to the presence of crustal mafic intrusives (5–35 km depth) in the rupture zone of the 2001 Bhuj main shock. Results suggest a relatively homogeneous stress regime in the GF zone favoring strike-slip motion, with a fault normal N-S compression.  相似文献   

2.
In view of an anomalous crust–mantle structure beneath the 2001 Bhuj earthquake region, double-difference relocations of 1402 aftershocks of the 2001 Bhuj earthquake were determined, using an improved 1D velocity model constructed from 3D velocity tomograms based on data from 10 to 58 three-component seismograph stations. This clearly delineated four major tectonic features: (i) south-dipping north Wagad fault (NWF), (ii and iii) south-dipping south Wagad faults 1 and 2 (SWF1, SWF2), and (iv) a northeast dipping transverse fault (ITF), which is a new find. The relocated aftershocks correlate satisfactorily with the geologically mapped and inferred faults in the epicentral region. The relocated focal depths delineate a marked variation to the tune of 12 km in the brittle–ductile transition depths beneath the central aftershock zone that could be attributed to a lateral variation in crustal composition (more or less mafic) or in the level of fracturing across the fault zone. A fault intersection between the NWF and ITF has been clearly mapped in the 10–20 km depth range beneath the central aftershock zone. It is inferred that large intraplate stresses associated with the fault intersection, deepening of the brittle–ductile transition to a depth of 34 km due to the presence of mafic/ultramafic material in the crust–mantle transition zone, and the presence of aqueous fluids (released during the metamorphic process of eclogitisation of lower crustal olivine-rich rocks) and volatile CO2 at the hypocentral depths, might have resulted in generating the 2001 Bhuj earthquake sequence covering the entire lower crust.  相似文献   

3.
During the last six years, National Geophysical Research Institute, Hyderabad has established a semi-permanent seismological network of 5–8 broadband seismographs and 10–20 accelerographs in the Kachchh seismic zone, Gujarat with a prime objective to monitor the continued aftershock activity of the 2001 Mw 7.7 Bhuj mainshock. The reliable and accurate broadband data for the 8 October Mw 7.6 2005 Kashmir earthquake and its aftershocks from this network as well as Hyderabad Geoscope station enabled us to estimate the group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the Peninsular India. Firstly, we measure Rayleigh-and Love-wave group velocity dispersion curves in the period range of 8 to 35 sec and invert these curves to estimate the crustal and upper mantle structure below the western part of Peninsular India. Our best model suggests a two-layered crust: The upper crust is 13.8 km thick with a shear velocity (Vs) of 3.2 km/s; the corresponding values for the lower crust are 24.9 km and 3.7 km/sec. The shear velocity for the upper mantle is found to be 4.65 km/sec. Based on this structure, we perform a moment tensor (MT) inversion of the bandpass (0.05–0.02 Hz) filtered seismograms of the Kashmir earthquake. The best fit is obtained for a source located at a depth of 30 km, with a seismic moment, Mo, of 1.6 × 1027 dyne-cm, and a focal mechanism with strike 19.5°, dip 42°, and rake 167°. The long-period magnitude (MA ~ Mw) of this earthquake is estimated to be 7.31. An analysis of well-developed sPn and sSn regional crustal phases from the bandpassed (0.02–0.25 Hz) seismograms of this earthquake at four stations in Kachchh suggests a focal depth of 30.8 km.  相似文献   

4.
5.
During the last six years, the National Geophysical Research Institute, Hyderabad has established a semi-permanent seismological network of 5 broadband seismographs and 10 accelerographs in the Kachchh seismic zone, Gujarat, with the prime objective to monitor the continued aftershock activity of the 2001 Mw7.7 Bhuj mainshock. The reliable and accurate broadband data for the Mw 7.6 (8 Oct., 2005) Kashmir earthquake and its aftershocks from this network, as well as from the Hyderabad Geoscope station, enabled us to estimate the group velocity dispersion characteristics and the one-dimensional regional shear-velocity structure of peninsular India. Firstly, we measure Rayleigh- and Love-wave group velocity dispersion curves in the range of 8 to 35 sec and invert these curves to estimate the crustal and upper mantle structure below the western part of peninsular India. Our best model suggests a two-layered crust: The upper crust is 13.8-km thick with a shear velocity (Vs) of 3.2 km/s; the corresponding values for the lower crust are 24.9 km and 3.7 km/sec. The shear velocity for the upper mantle is found to be 4.65 km/sec. Based on this structure, we perform a moment tensor (MT) inversion of the bandpass (0.05–0.02 Hz) filtered seismograms of the Kashmir earthquake. The best fit is obtained for a source located at a depth of 30 km, with a seismic moment, Mo, of 1.6 × 1027 dyne-cm, and a focal mechanism with strike 19.5°, dip 42°, and rake 167°. The long-period magnitude (MA ~ Mw) of this earthquake is estimated to be 7.31. An analysis of well-developed sPn and sSn regional crustal phases from the bandpassed (0.02–0.25 Hz) seismograms of this earthquake at four stations in Kachchh suggests a focal depth of 30.8 km.  相似文献   

6.
The source parameters for 213 Bhuj aftershocks of moment magnitude varying from 2.16 to 5.74 have been estimated using the spectral analysis of the SH- waveform on the transverse component of the three-componnet digital seismograms as well as accelerograms. The estimated stress drop values for Bhuj aftershocks show more scatter (Mo0.5 to 1 ∞ Δσ) toward the larger seismic moment values (log Mo ≥ 1014.5 N-m, larger aftershocks), whereas, they show a more systematic nature (Mo3 ∞ Δσ) for smaller seismic moment (log Mo < 1014.5 N-m, smaller aftershocks) values. This size dependency of stress drop has also been seen from the relation between our estimated seismic moment and source radius, however, this size-dependent stress drop is not observed for the source parameter estimates for the other stable continental region earthquakes in India and around the world. The estimated seismic moment (Mo), source radius (r) and stress drop (Δσ) for aftershocks of moment magnitude 2.16 to 5.74 range from 1.95 × 1012 to 4.5 × 1017 N-m, 239 to 2835 m and 0.63 to 20.7 MPa, respectively. The near-surface attenuation factor (k) is found to be large of the order of 0.03 for the Kachchh region, suggesting thick low velocity sediments beneath the region. The estimated stress drop values show an increasing trend with the depth indicating the base of seismogenic layer (as characterized by larger stress drop values (>15 MPa)) lying in 22–26km depth range beneath the region. We suggest that the concentration of large stress drop values at 10–36km depth may be related to the large stress/strain associvated with a brittle, competent intrusive body of mafic nature.  相似文献   

7.
Delineation of the top sedimentary structure and its Qs vs. Qp relationship using the travel-time difference of direct S and converted Sp phase is key to understanding the seismic hazard of any sedimentary basin area. We constructed filtered displacement waveforms from local ETNA Episensor acceleration recordings as well as local velocity recordings of aftershocks of the 2001 Bhuj earthquake recorded by the Kachchh seismological network of the National Geophysical Research Institute (NGRI), Hyderabad, India during 2001–2004. Stations are within 15–70km of epicenters, and the resulting displacement waveforms are generally simple, displaying prominent P, Sp, and S wave pulses. Particle motion of P and S waves suggest near-vertical raypaths consistent with preliminary depth estimates. The direct S wave on the horizontal component is characterized by lower frequency content than the converted Sp phase on the vertical component. This difference in frequency content between S and Sp phases can be explained in terms of different attenuation effects for P and S waves in the unconsolidated sediments. The Sp phase is generated by S-to-P phase conversion at the base of Mesozoic sediments of the Kachchh basin. Travel-time inversion (VELEST) of 2565 P and 2380 S arrivals from 658 well located aftershocks recorded at 8–14 three-component local seismic stations led to 1 D velocity models indicated very slow sediments in the upper 0–2 km depth range (Vp: 2.92 km/s and Vs: 0.90 km/s) and an increasing trend of velocities with depth at 2–40 km depth. The estimated sediment thicknesses beneath 12 accelerograph and 6 seismograph sites from the estimated velocity model and the travel-time difference between S and converted Sp phases reaches a maximum of (1.534 ± 0.117) km beneath Bandri (near the location of 2001 Bhuj mainshock) and attains a minimum sediment thickness of (0.858 ± 0.104) km beneath Ramvav and Burudia. The spectral ratios between Sp and S from 159 three-component accelerograms have been used to study seismic wave attenuation in the Kachchh rift basin. The estimated Qs vs. Qp relations for 12 accelerograph sites vary from Qs = 0.184 Qp (at Chobari) to Qs = 0.505 Qp (at Dudhai). For stations Chobari, Chopdwa, Jahawarnagar, Vondh and Tapar, the spectral ratio slopes and hence the calculated Qs vs. Qp relations are effectively the same, and the correlation coefficients are quite high (0.91–0.93). Stations Adhoi, Manfara, New Dudhai, Dudhai and Sikara have similar Qs vs. Qp relationships to each other and also have high correlation coefficients (0.78–0.87). The spectral ratios for stations Anjar and Ramvav are small and poorly constrained, resulting in less reliable Qs vs. Qp relations. This could be due to noisy data, fewer available waveforms, or scattering due to velocity heterogeneities and/or interface irregularities.  相似文献   

8.
Site response in the aftershock zone of 2001 Bhuj Mw 7.7 earthquake has been studied using the H/V spectral ratio method using 454 aftershocks (Mw 2.5–4.7) recorded at twelve three-component digital strong motion and eight three-component digital seismograph sites. The mean amplification factor obtained for soft sediment sites (Quaternary/Tertiary) varies from 0.75–6.03 times for 1–3 Hz and 0.49–3.27 times for 3–10 Hz. The mean amplification factors obtained for hard sediment sites (hard Jurassic/Mesozoic sediments) range from 0.32–3.24 times for 1–3 Hz and 0.37–2.18 times for 310 Hz. The upper bounds of the larger mean amplification factors for 1–3 Hz are found to be of the order of 3.13–6.03 at Chopadwa, Vadawa, Kavada, Vondh, Adhoi, Jahwarnagar and Gadhada, whereas, the upper bounds of the higher mean amplification factors at 3–10 Hz are estimated to be of the order of 2.00–3.27° at Tapar, Chopadwa, Adhoi, Jahwarnagar, Gandhidham and Khingarpur. The site response estimated at Bhuj suggests a typical hard-rock site behavior. Preliminary site response maps for 1–3 Hz and 310 Hz frequency ranges have been prepared for the area extending from 23–23.85 °N and 69.65–70.85°E. These frequency ranges are considered on the basis of the fact that the natural frequencies of multi-story buildings (3 to 10 floor) range between 1–3 Hz, while the natural frequencies for 1 to 3 story buildings vary from 3–10 Hz. The 1–3 Hz map delineates two distinct zones of maximum site amplification (>3 times): one lying in the NW quadrant of the study area covering Jahwarnagar, Kavada and Gadadha and the other in the SE quadrant of the study area with a peak of 6.03 at Chopadwa covering an area of 70 km × 50 km. While the 3–10 Hz map shows more than 2 times site amplification value over the entire study area except, NE quadrant, two patches in the southwest corner covering Bhuj and Anjar, and one patch at the center covering Vondh, Manfara and Sikara. The zones for large site amplification values (∼3 times) are found at Tapar, Chopadwa, Adhoi and Chobari. The estimated site response values show a good correlation with the distribution of geological formations as well as observed ground deformation in the epicentral zone.  相似文献   

9.
本文采用双差定位方法对2017年西藏米林MS6.9地震的余震序列进行重定位,获得了较准确的余震空间分布。在此基础上,计算了米林地震震源区的b值空间分布,并结合前人资料研究了米林地震前后的b值变化。重定位结果显示:米林地震余震序列呈NW?SE向分布,主要分布在雅鲁藏布江大拐弯缝合带和比鲁构造岩片的北东边界,震源深度集中于3—20 km范围内。b值时间分布显示:米林地震震前震源区的b值降低,表明震前震源区存在较强的应力积累;地震后震源区的b值呈现跳跃式上升,反映出震源区应力释放,同时随时间的推移,b值逐渐趋于稳定。米林地震震源区的b值在0.52—1.35范围内变化,15 km深度以上b值在东、西方向上存在差异,15 km以下在东北、南西方向上存在差异,由此推测不同的b值分布与地下的结构特征有关,浅层的b值变化与震源区的破裂程度相关,深部变化则反映了不同构造单元的岩性差异。   相似文献   

10.
渤海地震序列及其特征   总被引:17,自引:1,他引:16       下载免费PDF全文
1969年7月18日渤海海域(北纬38°20′,东经119°27′)发生7.4级地震,属主震-余震型。 区域地震活动分析表明,主震前出现小震条带、b值低等异常现象。研究重新校订的余震目录资料,发现余震空间分布具有随时间由横向集中、垂向扩散到横向扩散、垂向集中的过程,及b值高、P值大等特点。另外,对于渤海地震与1975年海城7.3级地震的同异点等问题进行了讨论  相似文献   

11.
曾宪伟  闻学泽  龙锋 《地球物理学报》2019,62(12):4604-4619
综合利用区域台站和流动台站(近台)的记录,基于初至P震相重新测定了2017年九寨沟序列M_S7.0主震和M_L≥3.0余震的震源位置,并利用较高精度的定位结果分析余震分布与地震构造的关系,解释发震断裂带的结构.获得的新认识有:(1)九寨沟主震震源深度为16km,位于余震带中段的南缘;余震主要分布深度为4~17km.(2)沿余震带的走向,余震分布与主震同震位错大小的分布明显相关.余震带中段8~16km深度存在的余震稀疏区与同震位错的高值区相吻合,应是发震断裂带主凹凸体的部位,也是主震时应变释放较充分的部位;余震带南东段10~18km深度的余震密集区对应了同震位错的亏损区之一,三次M_L≥5.0余震都发生于此;余震带西北段在5~10km之下既缺少余震,又属同震位错的亏损区,可能与那里多条断裂的交汇或合并造成的构造复杂性有关;余震带中-北西段3~5km深度的也缺少余震,也对应了浅部的同震位错亏损区.(3)证实了九寨沟地震的发震构造为虎牙断裂带北段,同时新揭示出发震断裂带表现为由主断裂和分支断裂构成的、向上分叉的花状结构,尺度约为4.5km宽(最大)、35km长,主断裂朝SW陡倾.这些反映主震破裂可能不只受控于单一的断裂,而有可能是沿主断裂发生主破裂,而沿分支断裂发生次要破裂.另外,本文对发震断裂带结构的分段解释,是遵循构造地质学原理去综合震源排列、震源机制解、地表断层已知位置、相邻剖面断层解释结果等信息的分析结果,而不仅仅依据余震的密集分布进行推断.  相似文献   

12.
We examined seismic characteristics, b value and fractal dimension of the aftershock sequence of the January 26, 2001 Bhuj earthquake (Mw 7.7) that occurred in the Kutch failed rift basin, western margin of the Stable Continental Region (SCR) of India. A total of about 2,000 events (M?≥?2.0) were recorded within two and a half months, immediately after the main shock. Some 795 events were precisely relocated by simultaneous inversion. These relocated events are used for mapping the frequency-magnitude relation (b value) and fractal correlation dimension (Dc) to understand the seismic characteristics of the aftershocks and the source zone of the main shock. The surface maps of the b value and Dc reveal two distinct tectonic arms or zones of the V-shaped aftershock area, western zone and eastern zone. The b value is relatively higher (~1.6) in the western zone compared to a lower value (~1.4) in the eastern zone. The Dc map also shows a higher value (1.2–1.35) in the western zone compared to a lower Dc (0.80–1.15) in the eastern zone; this implies a positive correlation between Dc and b value. Two cross sections, E–W and N–S, are examined. The E–W sections show similar characteristics, higher b value and higher Dc in the western zone and lower in the eastern zone with depth. The N–S sections across the fault zones, however, show unique features; it imaged both the b and Dc characteristics convincingly to identify two known faults, the Kutch Mainland fault and the South Wagad fault (SWF), one stepping over the other with a seismogenic source zone at depth (20–35?km). The source zone at depth is imaged with a relatively lower b and higher Dc at the ‘fault end’ of the SWF showing a negative correlation. These observations, corroborated with the seismic tomography as well as with the proposed geological/tectonic model, shed a new light to our understanding on seismogenesis of the largest SCR earthquake in India in the recent years.  相似文献   

13.
研究中国大陆地区中强地震序列震后早期阶段(震后15天)ETAS模型参数的平均统计特征,据此讨论不同统计条件下的序列衰减及余震激发问题.宏观而言,模型参数b、p、α数值分布较为离散,不同统计条件下模型参数平均值的差异显著性不十分突出.详细对比不同统计条件下模型参数平均值的微小差异,b值随主震震级增大而增大,但b值随不同区域、不同主震断层类型或不同序列类型的变化不明显.p、α具有一定的区域特征,西南、西北p值略低于新疆及华北,表明西南、西北序列衰减相对较慢而新疆、华北序列衰减相对较快,华北α较低而西北α相对最高,意味着尽管华北序列衰减相对较快,但其激发高阶余震的能力却相对强,西北尽管序列衰减较慢,但序列结构单一,激发高阶余震的能力弱.p与主震断层类型关系不明显,即主震破裂性质不是决定序列衰减快慢的主要因素;α与主震断层类型有一定关系,走滑-近走滑型破裂所导致序列的α值最小、斜滑型次之、倾滑-近倾滑型最大,表明走滑-近走滑型序列激发高阶余震的能力最强、逆冲型最弱、斜滑型居中.p、α随主震震级增大而减小,意味着主震震级越高则序列衰减越慢、激发高阶余震的能力越强.不同类型序列p、α有一定差异,主余型序列p最小、孤立型p最大,表明相对而言主余型序列衰减最慢、孤立型序列衰减最快、多震型序列衰减速率居中.孤立型序列与主余型序列α大体一致、大于多震型序列的α值,即多震型序列激发高阶余震的能力相对最强,孤立型及主余型序列则相对较弱.  相似文献   

14.
QC-estimates of Kachchh Basin in western India have been obtained in a high frequency range from 1.5 to 24.0 Hz using the aftershock data of Bhuj earthquake of January 26, 2001 recorded within an epicentral distance of 80 km. The decay of coda waves of 30 sec window from 186 seismograms has been analysed in four lapse time windows, adopting the single backscattering model. The study shows that Qc is a function of frequency and increases as frequency increases. The frequency dependent Qc relations obtained for four lapse-time windows are: Qc=82 f1.17 (20–50 sec), Qc=106 f1.11 (30–60 sec), Qc=126f1.03 (40–70 sec) and Qc=122f1.02 (50–80 sec). These empirical relations represent the average attenuation properties of a zone covering the surface area of about 11,000, 20,000, 28,000 and 38,000 square km and a depth extent of about 60, 80, 95, 110 km, respectively. With increasing window length, the degree of frequency dependence, n, decreases marginally from 1.17 to 1.02, whereas Q0 increases significantly from 82 to 122. At lower frequencies up to 6 Hz, Qc−1 of Kachchh Basin is in agreement with other regions of the world, whereas at higher frequencies from 12 to 24 Hz it is found to be low.  相似文献   

15.
Introduction On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. In total 87 events with ML3.0 were recorded by Beijing Telemetry Seismic Network (BTSN) before March of 1999. Before relocation the preliminary hypocenters determined by BTSN showed an epicentral distribution of 25 km long and 25 km wide without any predominate orientation. The epicentral a…  相似文献   

16.
The aftershock activity of the May 12, 2008 Wenchuan Ms8.0 Earthquake Sequence shows an obvious segmented feature. Most of the large aftershocks were distributed in the north and south parts of the aftershock zone. Thrusting was dominant with a small amount of strike-slip component in the south part. The aftershock activity decayed gradually, presenting the sequence features of a mainshock-aftershock pattern. The north part was the ending area of the maiushock fracture where strike-slipping was dominant, showing an obvious swarm feature. Therefore it became the major area for large aftershocks. The modulation of the earth tide on aftershock activity is remarkable; most large aftershocks occur during the period of flood and neap tide. The time period around 16:00 was the dominant occurring time for large aftershocks. The p-value, a parameter of modified Omori formula, increases gradually with time, and reaches about 1 at the end. Based on previous study, the sequence patterns, magnitude of maximum aftershock, as well as the duration of aftershock activity has been discussed. The primary results also show that the magnitude difference between the maiushockand the maximum aftershock is proportional to the rupture size of the maiushock for huge earthquakes of about Ms8.0. This means that when the magnitudes of the earthquakes are nearly the same, large rupture size corresponds to sufficient energy release.  相似文献   

17.
吕鹏  丁志峰  朱露培 《地震学报》2011,33(4):407-419
选取了汶川地震主震后的2008年5月12日——2009年8月31日, 震级为3.0le;MSle;5.0的余震4240次.利用波形互相关方法得到其P波到时,用双差定位方法对其进行定位,最终得到了2441次重新定位的结果.统计定位误差(两倍标准偏差)在E-W方向为0.4 km,N-S方向为0.4 km,垂直方向为0.7 km.定位结果表明,汶川地震的余震深度集中在10——20 km,震中分布与龙门山中央断裂带的走向关系密切.沿龙门山断裂的地震分布具有明显的分段性,西南段呈水平带状分布,东北段接近垂直分布,且在北川附近存在深度突变.这与龙门山断裂的地震在西南段多表现为逆冲,东北段多表现为走滑的现象相吻合.在深度剖面上地震的空间分布存在分立的特征,通过对比前人在此地区浅层的地震剖面资料, 发现地震空间分布与已探知的浅部断层有较好的对应关系.   相似文献   

18.
本文使用祁连山主动源台网和甘肃省数字测震台网记录到的地震资料,应用双差定位方法和遗传算法对2019年甘肃张掖M5.0地震及其余震进行重定位,获得了30个地震事件的重定位结果,双差定位显示主震位置为38.502°N,100.254°E,震源深度14.7 km。重定位结果显示余震分布在昌马—俄博断裂,较为集中,震源深度主要分布在5~15 km范围内,余震序列沿SW—NE向空间分布。  相似文献   

19.
Geomagnetic field variations recorded by an array of magnetometers spread across the Kachchh Rift basin are reduced to a set of induction arrows as a diagnostic of lateral electrical conductivity variations. A non-uniform thin-sheet electrical conductance model is developed to account for the salient induction patterns. It indicates that the imaged conductivity anomalies can be related to the sediment-filled structural lows in between the fault bounded uplifts. It is suggested that sagging structural lows preserved the marine sediments deposited during the Mesozoic sea transgression and later developed into first order embayment basins for the deposition of sediments in association with Late Eocene transgression. Depth integrated electrical conductance helped in mapping two depo-centres: along the ENE-WSW trending Banni half-Graben bounded by the Kachchh Main fault on the south and, second, along the Vinjan depression formed in response to the subsidence between the Vigodi fault and westward extension of the Katrol Hill fault together with the westward bending of the Median High. Presence of metamorphosed graphite schist clasts in shale dominated Mesozoic sequence and/or thin films of carbon resulting from the thermal influence of Deccan activity on Carbonate-rich formations can account for the high electrical conductivity anomalies seen in the depo-centres of thick Mesozoic and Tertiary sediments. Additionally two high conductivity zones are imaged encompassing a block defined by the 2001 Bhuj earthquake and its aftershocks. In agreement with gravity, magnetic and seismic velocity signatures, aqueous fluids released by recrystallizing magmatic bodies intruded in association with Deccan trap activity account for mapped high conductivity zones. High fluid pressure in such a fractured domain, surrounding the intruded magmatic plugs, perturb the regional stress concentrations to produce frequent and low magnitude aftershocks in the shallow section of the epicentral track of the 2001 Bhuj earthquake.  相似文献   

20.
2017年8月8日在青藏高原东缘四川省九寨沟县发生M7.0级强烈地震,极震区烈度达Ⅸ度,但无明显地表破裂,一定程度上限制了发震构造的确定和后续地震危险性判定.本文基于截止至2017年8月14日的地震资料,采用多阶段定位方法,对主震及余震进行了重新定位,同时,利用CAP波形反演方法,获得了M7.0主震与13次ML ≥ 4.0级余震的震源机制解和震源矩心深度,进而初步分析了本次地震的发震构造.结果显示,九寨沟M7.0地震的矩震级MW6.4,震源矩心深度5 km,表明主震发生在上地壳浅部,与2003年伊朗巴姆(Bam)MW6.5地震特征极为相似;12次ML ≥ 4.0级余震的震源矩心深度6~12 km,显示这些余震发生在主震下部,仅1次例外.重新定位后的余震震中呈NW-SE向窄带展布,位于近NS向的岷江断裂与近EW向的东昆仑断裂带东端分支塔藏断裂所夹持的区域,余震带长轴长约38 km,主震位于余震带中部.根据余震震中分布、主震及余震震源机制解等,推测本次九寨沟M7.0地震及其余震的主发震构造为位于岷江断裂与塔藏断裂之间的树正断裂.震源机制解揭示,树正断裂呈左旋走滑,走向约152°,近SE,倾向SW,倾角约70°,该断裂应属于东昆仑断裂东端的分支断裂之一,或与东南侧的虎牙断裂构成统一断裂系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号