首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Shear wave velocity is one of the important dynamic characteristics of soil layers and applied widely in aseismic engineering. In this paper, 500 drill logging data are used to make a linear interpolation based on 0.01°×0.01°×1m grid. A shallow 3-D shear wave velocity structure of Tianjin coastal area is obtained. According to the data and geological background, we selected two typical velocity profiles to try to introduce and explain its relationship to basement structure. The results show that the shear wave velocity structure clearly presents the characteristic of stratification and lateral inhomogeneity. Furthermore, the difference of the shear wave structure between tectonic elements is clear and the velocity structure between the two sides of the local or border fault in the Quaternary is disturbed or affected significantly. It intuitively shows that the basement structure and fault activity of this region had good control of sedimentation development and strata formation in the Quaternary period which would have an important effect on engineering seismic and geological condition evaluation.  相似文献   

2.
The regional seismotectonic environment for the Zhangbei- Shangyi earthquake is described, and in combination with the distribution of macroscopic seismic intensity, source mechanism solution, and interpretation of lineaments on satellite images, the seismogenic structure for the earthquake and possible seismogenic fault are discussed in this paper. It is suggested that the Zhangbei-Shangyi earthquake is a result of the latest movement along the northwestern termination of the Zhangjiakou-Penglai fault zone and we should pay serious attention to the future trend of seismic activity along this fault zone.  相似文献   

3.
The Jiaochang arcuate structure is one of the numerous arcuate structural belts in Sichuan. The present paper gives a further argument about the characteristics of that arcuate structure and the new activity of the Songpinggou fault and affirms that the Songpinggou fault is an active fault in the Holocene epoch. The Diexi M7.5 earthquake took place in 1933 on the west wing of that arcuate structure, near the apex of the arc. Many authors have given quite different opinions about the genetic structure of that earthquake. The authors have made on-the-spot investigations time and again over recent years. Besides this, the authors have also further studied the shape of intensity contour lines, the distribution characteristics of ground surface seismic hazards, the left-lateral dislocation of buildings along the Songpinggou fault, the NWtrending ground fissures that developed on the ground surface after earthquake, and so on. On this basis, it is still considered that the seismogenic fault of the 1933 Diexi M7.5 earthquake was the Songpinggou fault on the west wing of the Jiaochang arcuate structure.  相似文献   

4.
IntroductionSeismic wave is an important information source to analyze and study seismic source and internal structure of the earth. Studies of wave on different frequency ranges can provide many features of seismic source and internal structure of the earth. In recent years in quantitative study of seismic wave seismologists at home and abroad have developed a wide study field on the coda. Especially seismologists have done a lot of work in coda geneses, mechanism and its attenuation to explo…  相似文献   

5.
AbstractThe Benzilan-Tangke deep seismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE.Based on the travel times and the related amplitudes of phases in therecord sections,the 2-D P-wave crustal structure was ascertained in this paper. The velocity structure has quitestrong lateral variation along the profile.The crust is divided into 5 layers,where the first,second and third layerbelong to the upper crust,the forth and fifth layer belong to the lower crust.The low velocity anomaly zone gener-ally exists in the central part of the upper crust on the profile,and it integrates into the overlying low velocitybasement in the area to the north of Ma’erkang.The crustal structure in the section can be divided into 4 parts:inthe south of Garze-Litang fault,between Garze-Litang fault and Xiashuihe fault,between Xianshuihe fault andLongriba fault and in the north of Longriba fault,which are basically coincided with the regional tectonics division  相似文献   

6.
In this paper,the authors have summarized the kinematic and dynamic features of seismic waves observed by downhole seismometers in China.The features of seismic waves recorded on ground and downhole as well as in soil layer and bedrock layer,including amplitude,traveltime,spectrum and wave field are discussed individually and then explained integrally in term of the effects of soft covering layer.This research result has been applied to the establishment of downhole seismic stations,the location of fractures in oil fields and the measurement of seismic focus parameters and structural parameters of media.  相似文献   

7.
Over the past few decades, earthquake engineering research mainly focused on the effects of strong seismic shaking. After the 1999 earthquakes in Turkey and Taiwan, and thanks to numerous cases where fault rupture caused substantial damage to structures, the importance of faulting-induced deformation has re-emerged. This paper, along with its companion (Part Ⅱ), exploits parametric results of finite element analyses and centrifuge model testing in developing a four-step semi-analytical approach for analysis of dip-slip (normal and thrust) fault rupture propagation through sand, its emergence on the ground surface, and its interaction with raft foundations. The present paper (Part Ⅰ) focuses on the effects of faulting in the absence of a structure (i.e., in the free-field). The semi-analytical approach comprises two-steps: the first deals with the rupture path and the estimation of the location of fault outcropping, and the second with the tectonically- induced displacement profile at the ground surface. In both cases, simple mechanical analogues are used to derive simplified semi-analytical expressions. Centrifuge model test data, in combination with parametric results from nonlinear finite element analyses, are utilized for model calibration. The derived semi-analytical expressions are shown to compare reasonably well with more rigorous experimental and theoretical data, thus providing a useful tool for a first estimation of near-fault seismic hazard.  相似文献   

8.
Propagation through stress-aligned fluid-filled cracks and other inclusions have been claimed to be the cause of azimuthal anisotropy observed in the crust and upper mantle.This paper examines the behavior of seismic waves attenuation caused by the internal structure of rock mass,and in particular,the internal geometry of the distribution of fluid-filled openings Systematic research on the effect of crack parameters,such as crack density,crack aspect ratio(the ratio of crack thickness to crack diameter),pore fluid properties(particularly pore fluid velocity),VP/VS ratio of the matrix material and seismic wave frequency on attenuation anisotropy has been conducted based on Hudson’s crack theory.The result shows that the crack density,aspect ratio,material filler,seismic wave frequency,and P-wave and shear wave velocity in the background of rock mass,and especially frequency has great effect on attenuation curves.Numerical research can help us know the effect of crack parameters and is a good supplement for laboratory modeling.However,attenuation is less well understood because of the great sensitivity of attenuation to details of the internal geometry.Some small changes in the characteristics of pore fluid viscosity,pore fluids containing gas and liquid phases and pore fluids containing clay can each alter attenuation coefficients by orders of magnitude.Some parameters controlling attenuation are therefore necessary to make reasonable estimations,and anisotropic attenuation is worth studying further.  相似文献   

9.
The Tancheng-Lujiang fault zone has great influence in eastern China. Studies have shown obvious signs of neotectonic activities on the Xinyi-Wuhe segment of the Tancheng-Lujiang fault zone. In this study, on the basis of the previous work, many seismological surveys are made along the Tancheng-Lujiang fault zone and trenches are excavated in key sites. Combined with the analysis of the seismic activities along the fault, the fault movement features and future seismic risk are discussed. Much first-hand information obtained in the paper can provide an important reference value for the study of large earthquake recurrence rules and the mid and long-term earthquake prediction on the Xinyi-Wuhe segment of the Tancheng-Lujiang fault zone.  相似文献   

10.
Exploration and research of fault activities are the fundamentals of earthquake prediction and prevention and disaster reduction. In order to determine the location, characteristics and activities of the Zhengzhou-Laoyachen fault, shallow seismic prospecting with different exploration depth across the Laoyachen fault was carried out in the northern suburbs of Zhengzhou city in 2006. The images of the subterranean structure and tectonics at depths of 30m~6000m have been available by applying the combined methods of explosive seismic sources and vibrator seismic sources, as well as the combination of diverse observation systems with different parameters. The outcome indicates that the Laoyachen fault is a normal fault running NW and dipping NE, which offsets stratums ahead of Neogene (N). However, no fault displacements are found in the interior stratums of Q+N.  相似文献   

11.
Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone(LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influence rupture propagation, and hold important information of earthquake physics. A number of geophysical and geodetic methods have been developed to derive high-resolution structure of the LVZ. Here, I review a few recent approaches, including ambient noise cross-correlation on dense across-fault arrays and GPS recordings of fault-zone trapped waves. Despite the past efforts, many questions concerning the LVZ structure remain unclear, such as the depth extent of the LVZ. High-quality data from larger and denser arrays and new seismic imaging technique using larger portion of recorded waveforms, which are currently under active development, may be able to better resolve the LVZ structure. In addition, effects of the alongstrike segmentation and gradational velocity changes across the boundaries between the LVZ and the host rock on rupture propagation should be investigated by conducting comprehensive numerical experiments. Furthermore, high-quality active sources such as recently developed large-volume airgun arrays provide a powerful tool to continuously monitor temporal changes of fault-zone properties, and thus can advance our understanding of fault zone evolution.  相似文献   

12.
昆仑山断裂带围陷波的有限差分数值模拟解释   总被引:2,自引:0,他引:2       下载免费PDF全文
利用交错网格有限差分方法对昆仑山断裂带人工爆破产生的围陷波进行了三维数值模拟解释.为提高断裂带最终模型的可信度,在围陷波模拟的同时考虑了人工爆破记录的三个分量.对昆仑山断裂带围陷波的模拟结果表明,影响围陷波特性的断裂带深度主要在10 km以内.S波速度和断裂带宽度对围陷波的到时、频率、振幅和相位影响较大.数值模拟解释获得的昆仑山断裂带的细结构参数是:浅部断裂带宽度为300 m,深部为250 m;深度在400 m以上断裂带内S波速度为098 km/s,外部围岩S波速度为170 km/s,Q值为138;S波速度和Q值随着深度的增加而增加;1000 m以下断裂带内S波速度为280 km/s,围岩S波速度为33 km/s.  相似文献   

13.
Introduction The study on deep crustal faults has been one of the most vigorous subjects in seismology. In the past, 3-D deep seismic sounding and 3-D seismic tomography were usually used for this pur-pose. But it is difficult to obtain the fine structures of the faults in deep crust by these methods. Recently, seismologists in the world pay more attention to the fault zone trapped waves. Since the fault-zone trapped waves arise from coherent multiple reflections at two boundaries of the fau…  相似文献   

14.
汶川地震断裂带东北端浅部结构的人工地震探测   总被引:2,自引:1,他引:1       下载免费PDF全文
结合汶川地震断裂带动态监测,利用快速响应探测系统,开展了断层带浅部结构人工地震探测.针对地震断裂带动态监测条件下的复杂波场和低信噪比的情况,在f-k波场分离的基础上,分别利用了折射波共中心点成像、面波速度反演、反射波叠加成像方法,进行了浅层断层和构造成像处理,并对处理结果进行了综合解释,给出了断裂带浅部断层分布和速度特征.为汶川地震龙门山断裂带东北端动态监测提供了基础结构信息,所发展的断裂带快速响应探测技术对于地震应急动态监测具有重要意义.  相似文献   

15.
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface. Foundation item: Joint Earthquake Science Foundation of China (201001). Contribution No. RCEG200305, Research Center of Exploration Geophysics, China Earthquake Administration.  相似文献   

16.
提出了确定断层带结构的一种方法,它利用基于断层带围陷波波形相关的网格搜索法,以定量地确定断层带参数.该方法通过建立一系列由断层带的相关参数构建的断层带结构模型,利用有限差分方法数值模拟每组参数对应的断层带模型所产生的围陷波,并与实际观测围陷波波形进行相关分析,计算由以断层参数为多维网格坐标的相关系数变化趋势,网格搜索其峰值,最终获得最佳的一组参数,并确定断层带的结构.本文对昆仑山断裂带人工激发的围陷波进行分析,利用该方法确定了断裂带宽度和Q值参数.  相似文献   

17.
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.  相似文献   

18.
松辽盆地断陷期天然气有利带预测是扩大该盆地勘探领域的一个重要组成部分.为在油气资源基地松辽盆地开展大范围深层油气预测,选择徐家围子断陷内局部构造—升平-兴城构造进行地面三分量地震勘探,得到一个可行的预测方案.在深探井控制下,利用三分量地震资料,进行P波、P-SV波层位标定、震相对比,得到研究工区断陷期火山岩分布的局部预测;经过目标层段振幅比、频率比等物性参数的计算对比,得到该工区断陷期营城组有利含气区预测.进一步分析了研究工区区域构造对断陷期地层的控制作用.从烃源岩种类、成熟程度以及火山岩储层性能几方面综合分析,认为在更大范围内存在深层有利含气区带是可能的.最后指出在深层有利含气区带预测中采用三维三分量技术的必要性,以及无井控预测的基本方法,包括构造特征、地层特征预测知识的延用,多参数特征间相似性和综合比较等.  相似文献   

19.
断裂构造的活动是地震的成因之一。断裂构造上的小震速度结构分布为人们准确提供了地下壳质结构模型,为断裂的活动性分析提供了依据。文中结合太行山南端的地震台网监测资料,利用小震P波走时数据,通过震源和速度结构的联合反演,确定了太行山断裂构造南端的三维速度结构模型。结果表明: 太行山山前断裂带的西侧存在NNE向断层,速度结构平面分布显示低速区沿断裂带呈条带状分布,太行山隆起区沉积层厚度由8km左右逐渐减薄为2km左右,同时受西侧作用力的影响地壳厚度逐渐增厚。  相似文献   

20.
In this article, we review our previous research for spatial and temporal characterizations of the San Andreas Fault (SAF) at Parkfield, using the fault-zone trapped wave (FZTW) since the middle 1980s. Parkfield, California has been taken as a scientific seismic experimental site in the USA since the 1970s, and the SAF is the target fault to investigate earthquake physics and forecasting. More than ten types of field experiments (including seismic, geophysical, geochemical, geodetic and so on) have been carried out at this experimental site since then. In the fall of 2003, a pair of scientific wells were drilled at the San Andreas Fault Observatory at Depth (SAFOD) site; the main-hole (MH) passed a ~200-m-wide low-velocity zone (LVZ) with highly fractured rocks of the SAF at a depth of ~3.2 km below the wellhead on the ground level (Hickman et al., 2005; Zoback, 2007; Lockner et al., 2011). Borehole seismographs were installed in the SAFOD MH in 2004, which were located within the LVZ of the fault at ~3-km depth to probe the internal structure and physical properties of the SAF. On September 282004, a M6 earthquake occurred ~15 km southeast of the town of Parkfield. The data recorded in the field experiments before and after the 2004 M6 earthquake provided a unique opportunity to monitor the co-mainshock damage and post-seismic heal of the SAF associated with this strong earthquake. This retrospective review of the results from a sequence of our previous experiments at the Parkfield SAF, California, will be valuable for other researchers who are carrying out seismic experiments at the active faults to develop the community seismic wave velocity models, the fault models and the earthquake forecasting models in global seismogenic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号