首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
利用奉贤1960—2019年气温、降水、日照等地面观测资料,分析奉贤地区冬季气温、冷暖冬事件的变化特征及冷暖冬对气象要素的响应。结果表明:奉贤地区60年冬季及冬季各月平均气温呈升温趋势,其中2月增温最明显,气候变暖导致奉贤地区出现暖冬频率及强度均有所增加,最低气温对冬季变暖贡献较大;奉贤冬季以20世纪90年代为界,由冷冬为主转为暖冬为主,1987年以来未出现强冷冬,1999年强暖冬开始出现并趋多;冬季气温与年平均气温及当年的年降水量、汛期降水量呈显著正相关,冷冬年汛期降水量以正常至偏少为主,暖冬年汛期降水量以偏多至正常为主。  相似文献   

2.
江苏冬季气温的年代际变化及其背景场分析   总被引:8,自引:4,他引:8  
利用1961-2000年江苏省60个台站的月平均气温资料,分析了江苏冬季(12月至次年2月)气温的异常空间分布特征;在此基础上,研究了江苏冬季气温的年代际变化及其对应的大气环流和SST异常的背景场特征;最后,初步探讨了江苏冬季气温的年代际异常与全球气温变化之间的可能联系。结果表明:(1)江苏冬季气温异常表现出整体偏冷或偏暖的趋势;(2)近40a,江苏冬季气温的异常变化具有显著的年代际变化特征,其中1961—1985年为偏冷期,而1986—1999年为偏暖期;(3)江苏冬季冷、暖期的大气环流、SSTA背景场存在显著的差异;东亚冬季风及江苏冬季气温的年代际异常与SSTA的年代际背景有着十分密切的联系。(4)在年代际尺度上,江苏冬季气温的异常变化与全球气温的异常变化具有较好的一致性,尤其是1980年代中期以来的异常升温与全球气温的明显增暖是同步的,可以认为江苏冬季气温的年代际变化主要体现为对全球增暖的响应。  相似文献   

3.
近40年海南岛冷冬气候特征及其成因分析   总被引:1,自引:0,他引:1  
朱晶晶  赵小平  吴慧  党建涛  易灵伟 《气象》2018,44(10):1286-1294
利用海南岛17个市、县近40年气象观测站逐月气温观测资料,参照《暖冬等级》国家标准,对海南岛异常冷冬事件的时空分布规律进行了分析。在此基础上,利用国家气候中心提供的74项环流指数以及1977—2017年NCEP/NCAR全球再分析格点资料、NOAA ERSST全球海表温度格点资料以及Nino3. 4指数和AO指数,对海南岛冷冬事件形成机制进行了研究。结果表明:海南岛冬季平均气温存在明显的年代际变化特征,近40年海南岛冷冬频发,共出现12次冷冬年。南部市、县发生冷冬的频次大于中部及北部,北部市、县冷冬发生的强度强于南部。海南岛冷冬形成原因主要是对流层大气环流异常,西伯利亚高压增强,东亚冬季风显著偏强,对应副热带高压偏弱、位置偏东,影响海南岛的冷空气更加活跃,使得海南岛冬季气温偏低。另外,南海海温较常年偏低,ENSO冷位相叠加AO指数正位相,有利于进一步诱发大气环流异常,促使海南岛冬季气温偏低,出现异常冷冬事件。  相似文献   

4.
利用1961—2018年重庆地区34个国家气象站冬季逐月平均气温资料,NCEP/NCAR再分析资料及大气环流指数和海温等资料,分析重庆冬季冷暖变化的时间演变特征及冷冬、暖冬年的异常环流形势。结果表明,近58 a重庆冬季平均气温整体呈增加趋势(约增加0.7℃),且变暖趋势通过α=0.05的显著性检验,增暖突变从1993年开始。重庆冷冬年和暖冬年的环流形势存在明显差异:前期夏、秋季的热带海温场偏冷(暖),冬季海平面气压场上西伯利亚高压偏强(弱),500 hPa高度距平场上欧亚大陆呈明显北高(低)南低(高)分布形势,乌拉尔山高压脊和东亚大槽偏强(弱);同时,西太平洋副热带高压和高原冷高压偏弱(强),印缅槽偏强(弱),导致东亚冬季风偏强(弱),有(不)利于冷空气南下影响重庆地区;印缅槽偏强(弱)导致槽前偏南风偏强(弱),有(不)利于槽前暖湿空气输送和重庆地区降水,这种环流配置导致重庆地区易出现冷(暖)冬。热带印度洋、西北太平洋和南半球赤道中太平洋是影响重庆冬季冷暖的关键海温区,对重庆冬季气温预测具有一定的指示意义。  相似文献   

5.
陕西冷暖冬年的标准及平均环流特征分析   总被引:2,自引:0,他引:2  
贺皓  罗慧  高红燕  李建科 《高原气象》2007,26(4):759-764
采用4个月平均(11月~2月)代表冬季,根据陕西1951年以来53年的历史资料,应用地面月平均气温、月平均最低气温和月平均最高气温统计量,讨论了"冷"和"暖"冬季的标准,给出了1951—2003年陕西"冷"和"暖"冬季的划分及异常年份,最后给出了"冷冬"和"暖冬"的环流特征。  相似文献   

6.
采用计算距平积温的方法,对桂林1957-1999年冬季各月的旬平均气温进行统计,确定冷,暖冬年的标准,找出7个暖冬年,9个冷冬年,并对这些年冬季的环流特征进行对比分析,找出造成桂林冷冬或暖冬的主要环流特征。  相似文献   

7.
湖北省冬季平均气温序列订正及其气候评价应用   总被引:2,自引:0,他引:2  
王凯  周月华  高媛 《气象科技》2015,43(4):697-703
在湖北省76个气象台站中,确定参考站22个,订正站31个,采用一元回归订正法,构建各订正站1961—2013年冬季月平均气温订正序列,从统计学和订正误差上进行了对比分析,并将订正结果应用于湖北省冬季影响评价。结果表明,单站评价订正前后差异明显;全省和分区订正前后基本一致,分区中订正前后冬季类型的不一致次数呈增多趋势;台站冬季类型变化明显,由冷冬向暖冬转变,冷冬减少变弱,暖冬增加变强。  相似文献   

8.
东北地区冬季气温与北极涛动年代际关系研究   总被引:15,自引:4,他引:15  
利用中国160站气温资料、北极涛动指数资料及关国NCEP/NCAR再分析资料中月平均海平面气压场、高度场、风场资料,分析了东北地区冬季气温、冬季北极涛动的年代际特征及其关系。结果表明:在年代际时间尺度上,两者之间存在显著正相关。冬季北极涛动处于低(高)指数期,东北冬季气温为持续冷冬(暖冬)期。可能影响机制是:在地面,冬季北极涛动处于低(高)指数期时,西伯利亚高压增强(减弱),亚洲大陆偏北冬季风增强(减弱),东北为持续冷冬(暖冬)期;在对流层中层,冬季北极涛动处于低(高)指数期时,东亚大槽加深(减弱),贝加尔湖以西以北脊增强(减弱),环流呈经向(纬向)型发展,东北对流层中层偏北风增强(减弱),东北为持续冷冬(暖冬)期。  相似文献   

9.
根据石羊河流域5个气象站1961—2018年的降水、气温、干旱实况资料,利用气候统计学方法分析ENSO事件对该区气候变化及干旱的影响。结果表明:厄尔尼诺事件会造成流域春季降水偏多,春、秋、冬季气温偏高,易出现暖冬;拉尼娜事件则春季降水偏少,秋季降水偏多,冬季气温偏低,易出现冷冬,中下游发生中度以上春旱、春末夏初旱和伏旱的概率较高。应用1968—2010年旬、月气象要素和大气环流特征量,采用最优子集回归方法,建立降水和干旱统计预测模式,然后结合ENSO事件,通过加权平均法构建集成预测概念模型。对模型进行检验,拟合率与准确率较高,已投入业务使用。  相似文献   

10.
基于1961—2020年山东省122站逐月平均气温资料、NOAA逐月海表温度资料以及NCEP/NCAR再分析大气环流资料,对山东强弱冷暖冬年进行了划分,分析了ENSO对山东冬季气温变化的影响.结果表明:山东冬季气温上升趋势明显,在20世纪80年代中期由偏冷阶段进入偏暖阶段,近年波动明显;去趋势项后,59 a中出现4个强...  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号