首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为探索焦作市夏季气候变化,选取测站1971-2000年的夏季降水量及≥35 ℃高温日数资料,采用均生函数和回归分析方法设计统计模型,该模型能较好地拟合历史实况,并使用该模型对焦作2001-2008年的夏季降水及高温日数进行了预测,结果显示该模型有一定参考价值.  相似文献   

2.
基于高温日数存在受不同物理因子影响不同时间尺度变率的特征,应用滤波对华南夏季高温日数进行时间尺度分离,得到高温日数的年代际分量和年际分量。统计分析高温日数总量、年代际分量和年际分量在各自对应时间尺度上的影响因子,采用"向前"交叉检验逐步回归法,分别建立高温日数总量、年代际分量和年际分量的回归模型。高温日数总量的回归模型即为高温日数不区分时间尺度的直接回归模型,而两个分量回归模型拟合结果的叠加,即为高温日数时间尺度分离统计模型对总量的拟合。利用十折交叉检验法,对高温日数直接回归模型和时间尺度分离统计模型的拟合结果进行比较:相比高温日数直接回归模型,时间尺度分离统计模型的年代际分量均方根误差由2.6降低到2.3,与观测数据的相关系数由0.69提高到0.73(显著性水平α=0.01);年际分量均方根误差由3.2降低到2.9,与观测数据的相关系数由0.4(α=0.1)提高到0.48(α=0.01);高温日数总量均方根误差由4.1降低到3.7,与观测数据的相关系数由0.48提高到0.62(α=0.01)。1979~2010年拟合时段华南夏季高温日数的回报结果表明:两模型回报结果与观测数据均存在明显相关(α=0.01),直接回归模型的相关系数为0.57,时间尺度分离统计模型提高到0.72。2011~2013年独立检验时段的预测结果表明:直接回归模型预测结果的平均均方根误差为26.4%,时间尺度分离统计模型降低到12.3%。初步结果表明,两模型对华南夏季高温日数均有一定的预测能力,而时间尺度分离统计模型的预测结果有所改进。  相似文献   

3.
湖南高温日时空分布特征及高温日数气候预测   总被引:1,自引:0,他引:1  
罗伯良  李易芝 《气象科技》2015,43(6):1110-1115
利用1961—2013年湖南74个气象观测站逐日高温观测资料,建立了较完整的湖南高温日时间序列,分析了湖南高温日时空分布及变化趋势。结果表明,湖南高温日呈增加趋势,每10年增加2天左右,湘北高温日增加趋势显著;高温最长持续日数总体上湘南大部呈弱的减少趋势,每10年减少0.5天左右,湘中及湘北则呈较强的增加趋势,每10年增加1天左右。20世纪90年代以来,湖南高温天气显著增多、增强。利用最优子集回归构建气候预测模型,预测湖南高温平均出现日数,预测效果较好,可在业务中应用。  相似文献   

4.
利用1985—2014年地面常规气象观测资料,分析肇庆地区高温日数的时空变化特征,并对肇庆市未来出现的高温强年进行预测。结果表明:(1)肇庆市高温日数在2005年后主要呈现准5年的周期振荡,且在2010年后高温日数有显著增加趋势;(2)高温强年时,同期(7—8月)的副高强度偏强、位置偏南、南海夏季风异常偏弱;(3)基于10年高温强年建立的GM(1,1)模型预测肇庆将可能在2018—2019、2021—2022、2024—2025年期间出现高温强年。  相似文献   

5.
济源市夏季高温日数的气候特征及预测模型   总被引:1,自引:0,他引:1  
统计分析了济源1971-2007年夏季的年、月、旬气温资料,发现高温日数多发生在6-7月份,年高温日数多为14-20天,且具有逐渐增多的趋势.利用小波方法分析济源高温日数发现,1971-1990年高温日数存在8 a左右的周期震荡,1990-2007年震荡周期有减小趋势,约为6 a左右.应用模糊马尔科夫模型对济源市高温日数进行预测,预测结果与实况吻合.  相似文献   

6.
未来我国极端温度事件变化情景分析   总被引:12,自引:5,他引:7       下载免费PDF全文
基于Hadley气候预测与研究中心的区域气候模式系统PRECIS(Providing REgional Climates for Impacts Studies)单向嵌套该中心全球海-气耦合气候模式HadCM3高分辨率的大气部分HadAM3P, 检验PRECIS对我国气候基准时段(1961—1990年)极端温度事件的模拟能力, 分析IPCCSRES(Special Reporton Emission Scenarios)B2情景下未来2071—2100年相对于气候基准时段我国极端温度事件的变化响应。与观测资料的对比分析表明:PRECIS能够较好地模拟我国气候基准时段极端温度事件的局地分布特征。IPCC SRESB2情景下, 预估未来2071—2100年我国大部分地区高温日数出现频率均比气候基准时段高5倍以上; 霜冻日数将呈减少趋势, 我国南方地区的减少趋势大于北方地区; 暖期持续指数整体将呈增加趋势, 我国东北地区、西北地区中西部、华北地区和东南沿海地区增加显著; 冷期持续指数整体将呈减少趋势, 且东北地区、华北地区、西北地区及内蒙古、青藏高原大部地区的减少幅度将达到90%以上。  相似文献   

7.
程炳岩  郭渠  张一  孙卫国  王若瑜 《气象》2011,37(12):1544-1552
根据三峡库区及其周围35个气象站1961—2008年的逐日最高气温资料,分析了库区高温的时空变化特征;采用经验模态分解方法,探讨了近48年来三峡库区年均高温日数和日平均最高气温序列的振荡模态结构特征;利用均生函数模型作均值生成函数延拓,借助BP神经网络构建了一个新的预测模型,对三峡库区高温日数和最高气温进行了预测。结果表明,过去48年间,三峡库区年均高温日数为24.07天,高温日的平均最高气温为36.69℃,以3~5a和16a为显著振荡周期,在20世纪80、90年代为弱负距平,而在其他时期都为正距平。三峡库区高温日数分布呈北部多、东南部少的特征,高温日的平均最高气温以东南部较低,东北部较高。模型预测值与实际值的对比分析表明,该预测模型具有一定的实用性,不仅能够较好地拟合三峡库区高温的历史实况,而且对未来5~10年的演变趋势也具有一定的预报能力;对偶发极端气候事件的预测尚有待进一步提高。  相似文献   

8.
通过分析1997-2003年5-10月广西电网电力负荷月、周和节假日的变化特征,及与气温的相关关系,发现:电力负荷基本呈逐年增加的趋势,工作日和非工作日有着不同的变化特征,电力负荷与气温有明显的相关关系。采用逐步回归方法,建立了广西电网逐日电力负荷预测模型,对2002-2003年模型的拟合结果及2004-2005年模型的预测结果分析表明:模型对广西逐日电力负荷具有较好的拟合和预测效果,对逐日电力负荷的季节变化具有较好的拟合效果,尤其是夏季预测与实况趋势基本吻合。  相似文献   

9.
通过分析1997-2003年5~10月广西电网电力负荷月、周和节假日的变化特征,及与气温的相关关系,发现:电力负荷基本呈逐年增加的趋势,工作日和非工作日有着不同的变化特征,电力负荷与气温有明显的相关关系。采用逐步回归方法,建立了广西电网逐日电力负荷预测模型,对2002-2003年模型的拟合结果及2004-2005年模型的预测结果分析表明:模型对广西逐日电力负荷具有较好的拟合和预测效果,对逐日电力负荷的季节变化具有较好的拟合效果,尤其是夏季预测与实况趋势基本吻合。  相似文献   

10.
根据石羊河流域中游(武威)和下游(民勤)气象站1960—2015年逐日最高、平均气温观测数据,采用固定阈值法(天气标准)和百分位阈值法(平均标准)定义了高温事件,运用气候统计学方法分析了该区域高温事件强度、日数和极值的变化特征。统计结果显示,中、下游年代、年天气标准和平均标准高温事件强度总体上呈增强和日数呈增多趋势,2010—2015年高温事件强度增强和日数增多趋势明显,高温事件极值也呈增强趋势。高温事件出现在5—9月,高温事件强度和日数的高峰值均在7月,依次向两端递减。高温事件强度和日数均为下游>中游,说明闷热天气持续时间下游比中游更长。高温事件中、下游年天气标准强度和日数时间序列没有发生周期性变化,平均标准强度和日数时间序列均存在着5~7 a的准周期变化。高温事件中、下游天气标准强度和日数以及平均标准强度均没有发生气候突变,平均标准日数发生了气候突变,突变时间中游在1997年、下游在1996年。年高温事件存在一定的异常性,高温事件强度和日数正常年份概率在58.9%~73.2%,对生命健康和安全生产造成危害的强度偏强和特强年份概率在14.3%~16.9%、日数偏多和特多年份概率在14.3%~21.4%。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

13.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

14.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

15.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

16.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.SUBMISSIONAll submitted  相似文献   

17.
18.
<正>With the support of specialized funds for national science institutions,the Guangzhou Institute of Tropical and Marine Meteorology,China Meteorological Administration set up in October 2008 an experiment base for marine meteorology and a number of observation systems for the coastal boundary layer,air-sea flux,marine environmental elements,and basic meteorological elements at Bohe town,Maoming city,Guangdong province,in the northern part of the South China Sea.  相似文献   

19.
《大气和海洋科学快报》2014,7(6):F0003-F0003
AIMS AND SCOPE
Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

20.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号