首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
Using the National Center for Environmental Prediction reanalysis data on 1.0°×1.0° grids and data from the Tropical Cyclone yearbook(2000),a diagnostic analysis and numerical simulation were performed to investigate the characteristics and mechanism underlying the rapid weakening of typhoon Xangsane.The results show that a sharp decline in the intensity of typhoon Xangsane resulted from its movement into the cool sea surface temperature area in the East China Sea,the intrusion of cold air from the mainland into the typhoon,and a rapid increase of the vertical wind shear in the surrounding environment.An important factor that led to the demise of the typhoon was a significant decrease in the moisture transport into the typhoon.Furthermore,the results of the numerical simulation and sensitivity experiments indicate that sea surface temperature largely modulated the rapid weakening of typhoon Xangsane.  相似文献   

2.
Based on data of typhoon over the West Pacific and the South China Sea for the last 40 years, theshort-term climate oscillation of typhoon activities was revealed. The result indicated that the climaticvariation of typhoon activities has a tendency of climatic jump in changes in early 1970's. It showed thatbefore the jump of change the number of typhoon was increased and the intensity of typhoon was intensified after which the tendency of variation went contrary. In addition, the increase of typhoon numberduring recent years suggested again the jump of climatic change in the late 1980's, but the intensity oftyphoon did not have the same change. The analysis indicated that the short-term climatic oscillation andthe jump of climatic change have certain physical background. Such climate change tendency of typhoonwas shown to be related to the climatic oscillation of general circulation and SST, especially to the WestPacific subtropical high.  相似文献   

3.
Using tropical cyclone (TC) best track and intensity of the western North Pacific data from the Joint Typhoon Warning Center (JTWC) of the United States and the NCEP/NCAR reanalysis data for the period of 1992-2002, the effects of vertical wind shear on TC intensity are examined. The samples were limited to the westward or northwestward moving TCs between 5°N and 20°N in order to minimize thermodynamic effects. It is found that the effect of vertical wind shear between 200 and 500 hPa on TC intensity change is larger than that of the shear between 500 and 850 hPa, while similar to that of the shear between 200 and 850 hPa. Vertical wind shear may have a threshold value, which tends to decrease as TC intensifies. As the intensifying rate of TC weakens, the average shear increases. The large shear has the obvious trend of inhibiting TC development. The average shear of TC which can develop into typhoon (tropical depression or tropical storm) is below 7 m s-1 (above 8 m s-1).  相似文献   

4.
Based on daily NCEP reanalysis data, OLR and satellite rainfall data, the characteristic of the activities of South China Sea summer monsoon(SCSSM) in 2004 were analyzed. The results showed that the establishment of SCSSM was little later than normal and the intensity was stronger than normal. Influenced by the location of the northwest Pacific subtropical high, which was much northward and westward than normal, SCSSM was active mainly in the South China Sea areas. There existed obvious intraseasonal oscillation and two significant periods of SCSSM, one was about 20-30 days and the other about 40-50 days. The transportation of moisture was concentrated on the South China Sea and the northwest Pacific regions, reducing the northward transportation and resulting in drought in southern China  相似文献   

5.
Based on NCEP/CFSR 0.5° reanalysis data and the best track data from the Japan Tokyo Typhoon Center,composite and comparative analyses demonstrate the asymmetrical structures of the temperature and humidity in tropical cyclones over the Western North Pacific and the South China Sea from 1979 to 2010.The results are shown as follows.(1) With intensifying tropical cyclones,the flow field tends to become gradually more axisymmetric;however,the asymmetry of the specific humidity in the outer regions is more obvious.(2) In general,tropical cyclones have a non-uniform,vertical, "double warm-core" structure.The "warm-cores" in the lower level of weak tropical cyclones and in the higher level of strong tropical cyclones are the stronger of the two.(3) The distribution area of a "warm-core" is enhanced with cyclone intensification and tends to become more axisymmetric.At 200 hPa,the "warm-core" of a weak cyclone has a weak anticyclone in the center,whereas that of a strong cyclone has a weak cyclone in the center.(4)The "wet-core" of a tropical cyclone is primarily located in the lower level(700-850 hPa).With the cyclone's intensification,the intensity of the "wet-core" increases and the scope of the 0.8 g kg~(-1) specific humidity anomaly tends to expand to higher levels.(5) With the cyclone's deepening,the pseudo-equivalent potential temperature at different levels in different regions increases.In addition,the largest warming rates at each intensity level in the different regions occur in the core area,followed in turn by the envelope and outer areas.  相似文献   

6.
Typhoon Hato (2017) went through a rapid intensification (RI) process before making landfall in Zhuhai, Guangdong Province, as the observational data shows. Within 24 hours, its minimum sea level pressure deepened by 35hPa and its maximum sustained wind speed increased by 20m s-1. According to satellite observations, Hato encountered a large area of warm water and two warm core rings before the RI process, and the average sea surface temperature cooling (SSTC) induced by Hato was only around 0.73℃. Air-sea coupled simulations were implemented to investigate the specific impact of the warm water on its RI process. The results showed that the warm water played an important role by facilitating the RI process by around 20%. Sea surface temperature budget analysis showed that the SSTC induced by mixing mechanism was not obvious due to the warm water. Besides, the cold advection hardly caused any SSTC, either. Therefore, the SSTC induced by Hato was much weaker compared with that in general cases. The negative feedback between ocean and Hato was restrained and abundant heat and moisture were sufficiently supplied to Hato. The warm water helped heat flux increase by around 20%, too. Therefore, the warm water influenced the structure and the intensity of Hato. Although there might be other factors that also participated in the RI process, this study focused on air-sea interaction in tropical cyclone forecast and discussed the impact of warm water on the intensity and structure of a tropical cyclone.  相似文献   

7.
Three experiments for the simulation of typhoon Sinlaku (2002) over the western North Pacific are performed in this study by using the Canadian Mesoscale Compressible Community (MC2) atmospheric model. The objective of these simulations is to investigate the air-sea interaction during extreme weather conditions, and to determine the sensitivity of the typhoon evolution to the sea surface temperature (SST)cooling induced by the typhoon. It is shown from the three experiments that the surface heat fluxes have a substantial influence on the slow-moving cyclone over its lifetime. When the SST in the East China coastal ocean becomes 1℃ cooler in the simulation, less latent heat and sensible heat fluxes from the underlying ocean to the cyclone tend to reduce the typhoon intensity. The cyclone is weakened by 7 hPa at the time of its peak intensity. The SST cooling also has impacts on the vertical structure of the typhoon by weakening the warm core and drying the eye wall. With a finer horizontal resolution of (1/6)°×(1/6)°, the model produces higher surface wind, and therefore more surface heat fluxes are emitted from the ocean surface to the cyclone, in the finer-resolution MC2 grid compared with the relatively lower resolution of 0.25°×0.25°MC2 grid.  相似文献   

8.
According to me lime cross-section or SSI in me equatorial eastern racing and me historical data on typhoon actions over the western Pacific (including the South China Sea), a composite analysis of the actions of typhoon over the western Pacific in El Nino year (SST in the equatorial eastern Pacific are continuously higher than normal) and in the inverse El Nino year (there are continuative negative anomalies of SST in the equatorial eastern Pacific) is carried out. The results show that the actions of typhoon are in close relation with El Nino: The annual average number of typhoons over the western Pacific and South China Sea is less than normal in El Nino year and more in the inverse El Nino year; The annual average number of the landing typhoon on the continent of China bears the same relationship with El Nino; The anomalies of typhoon actions mainly occur during July-November and their starting are behind the anomaly of SST in the equatorial eastern Pacific.Based on the generation and development co  相似文献   

9.
Daily and weekly sea surface temperature data of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Advanced Microwave Scanning Radiometer-Earth Observing System sensors are used as forcing of the underlying sea surface in the mesoscale numerical model to simulate Typhoon Dujuan that moved across the South China Sea in 2003. The numerical results show that different SSTs near the typhoon center result in differences in the atmospheric wind field, indicating that the model has a fast and obvious response to SSTs. Different SST influences the intensity and track of Dujuan to some degree and has significant impacts on its precipitation and latent heat flux near the eye. The SST influence on Dujuan is mainly fulfilled by changing the latent heat flux between the ocean surface and the atmosphere above.  相似文献   

10.
The characteristics and possible physical mechanism of interdecadal variation of the intensity of the South Asian High (SAH) in summer are analyzed using the NCEP/NCAR reanalysis data and NOAA extended reconstructed sea surface temperature (SST) data. The results indicate that a remarkable interdecadal transition occurred in the late 1970s that increased the intensity of SAH, or, an abrupt climate change was around 1978. A comparative analysis between the weak and strong period of the SAH intensity shows that the related anomalous patterns of the atmospheric circulation (including wind field, air temperature field and vertical velocity field) are nearly opposite to each other. The surface latent heat flux anomalies over the plateau (especially in the northwest of the plateau) in summer exert great influence on the interdecadal variation of the SAH intensity and the surface sensible heat flux anomalies play a more important role. Consistent with the interdecadal variation of the SAH intensity, the monopole mode of the tropical Indian Ocean SST in summer also experienced a low to high transition in the late 1970s. To some extent, this can reveal the impact of the anomalous monopole mode of the tropical Indian Ocean SST in summer on interdecadal variation of the SAH.  相似文献   

11.
利用常规观测资料以及海南省中尺度自动站资料、海口多普勒雷达产品、FY系列卫星云图和NECP 1°×1°再分析资料,分析了2014年第9号超强台风"威马逊"(1409)在海南岛登陆前后其强度和降水特征及其近海急剧加强的原因。结果表明:"威马逊"登陆海南省文昌市翁田镇时强度维持或略有减弱,登陆前其中心附近极大风速超过74 m·s-1,最低海平面气压899.2 h Pa,为1949年建国以来登陆我国大陆最强台风;"威马逊"从7月18日10时到当日15时登陆文昌前的5 h内,其中心附近最大风速增大了5 m·s-1,最低气压下降了20 h Pa,其超强台风量级从18日11时开始维持时间达17 h;"威马逊"眼壁回波造成的海南北部地区强降水具有降水效率高、对流发展不够强盛的混合性降水特征,而其螺旋雨带"列车效应"造成的海南西部地区极值降水则具有典型的对流性降水特征;西太平洋副热带高压、低空急流、西风槽和南亚高压是"威马逊"近海持续加强的主要影响系统;低层辐合与高层辐散、弱的环境风垂直切变和适宜的海面温度、深厚的暖涡是"威马逊"近海急剧加强的原因。  相似文献   

12.
利用常规气象观测资料、卫星云图和NECP再分析资料,采用天气学诊断分析方法,对2017年第13号台风"天鸽"在近海急剧增强并达到超强台风级的特征进行了分析,讨论了其强度在近海急剧增强的原因。结果表明,南亚高压、西太平洋副高和低空急流的相互作用是"天鸽"近海急剧增强的主要影响系统;低层辐合与高层辐散、弱的环境风垂直切变和异常偏暖的近海海面温度是"天鸽"近海急剧加强的原因;100h Pa南亚高压南侧的东风急流显著加强有利于高层辐散和台风高层的出流。  相似文献   

13.
2008年9月四川一次持续暴雨过程触发及维持特征   总被引:2,自引:0,他引:2  
利用NCEP1°×1°6h再分析资料和常规观测资料,对2008年9月22—27日四川盆地持续性暴雨过程进行了诊断分析。结果表明:副热带高压、东北冷涡、低空切变、青藏高原东部高空槽以及台风是影响此次暴雨过程的主要天气系统;来源于南海及孟加拉湾的低层偏南气流提供了稳定的水汽输送;暴雨前期850hPaθse场呈典型的"Ω"形分布;强烈的上升运动触发不稳定能量释放,有利于强降水天气的发生发展。  相似文献   

14.
利用常规气象资料、NCEP 1°×1°再分析资料,采用天气学诊断分析方法,对超强台风"威马逊"(1409)和"达维"(0518)登陆进入北部湾前后强度变化特征差异进行对比分析,结果表明:(1)500 h Pa副高快速加强,850 h Pa季风急流和越赤道气流汇合卷入到台风环流中,台风移向的下游区域高低空(200—850 h Pa)垂直风切变小,南海北部海温偏高等是"威马逊"和"达维"登陆海南岛前在近海突然加强的有利条件。(2)从琼州海峡进入北部湾,摩擦消耗小,是"威马逊"进入北部湾后,强度下降小,仍维持超强台风级别的主要原因;而从海南岛中部西移进入北部湾,摩擦消耗大,是"达维"进入北部湾后,强度下降大,从超强台风降为台风级别的主要原因。(3)动能收支诊断分析显示,地形摩擦对动能的耗散主要集中在边界层内(800 h Pa以下),"威马逊"在超强台风阶段耗散作用最大,进入北部湾之后摩擦耗散减小,而"达维"则因横穿海南岛进入北部湾动能的摩擦耗散较大。  相似文献   

15.
利用NCEP/NCAR 1°×1°的6 h再分析资料和常规气象观测资料,综合分析了环流背景、"双台风效应"、冷空气活动和海陆下垫面对台风"达维"移动路径变化的影响,结果表明:(1)台风路径在登陆时第1次发生西折的主要原因是500 hPa副高东撤并由带状调整为块状分布,台风"苏拉"对"达维"吸附作用加强,且台风避开冷SST区趋向暖SST区行进;(2)鲁中山区的地形对台风第2次转向起到重要的阻挡作用,副高588线西伸明显,而副高边缘的西南气流增加了台风的东移分量,西风环流上短波槽的发展南下使台风向西移动的分量减弱消失,双台风强度的减弱和距离的增加使台风的吸附作用迅速减弱,这些因素共同导致了台风第2次转向。  相似文献   

16.
利用常规观测资料、雷达资料分析了台风"鹦鹉"影响过程的环流形势特征,发现:(1)台风鹦鹉的影响期间,南压高压中心位置稳定在青藏高原东部,有利于台风右侧高层的辐散流场;(2)副高强度偏弱位置偏东,不利台风东侧水汽输送.700hPa槽后的偏北气流大举南下与台风前的偏北气流合并,台风中层冷空气的入侵影响有利暴雨的发生;(3)...  相似文献   

17.
The 2.5×2.52 gridded ECMWF reanalysis data are used to diagnose the genesis, development and dissipation of typhoon Dan by calculated stream function, velocity potential and vapor budget. It is shown in the result that when typhoon Dan moved westwards, water vapor mainly came from the eastern and western boundaries, with most of it was transferred by the easterly flow south of the western North Pacific subtropical high; after Dan swerved northwards, water vapor mainly came from western boundary of the typhoon, and the vapor came from the South China Sea and the Indian Ocean. The transfer of water vapor was mainly concentrated on the mid-lower troposphere, especially the level of 925hPa, at which the most intensive transfer belt was located. During the different period of typhoon Dan, there was great water vapor change as indicated by stream function, velocity potential and vapor budget, which suggest the importance of water vapor in the development of typhoon Dan.  相似文献   

18.
利用2014年7月10日00:00—19日18:00(世界时)热带降水测量(TRMM)卫星3B42降水估测数据以及ERA5再分析数据,结合傅里叶变换以及Liang-Kleeman信息流等方法,分析台风威马逊(1409)强度与降水变化的相互作用。结果表明:台风威马逊(1409)降水具有明显的非对称性,降水主要位于台风中心偏西一侧,在该区域台风强度与降水相互影响。相较于台风强度对降水的影响,由降水到台风强度的信息流减小接近1个量级,表明在两者的相互作用中,台风强度变化的影响占主导。在水汽条件上,台风强度的增强(减弱)导致台风中心西南侧水汽通量辐合(辐散)的增强,进而与该区域的降水建立联系。此外,台风威马逊(1409)移动过程中随着强度变化,南海以及西太平洋水汽通道均存在明显响应。在动力条件上,中低层垂直螺旋度强值中心主要位于台风中心西侧,台风强度的增强(减弱),导致台风中心西侧的垂直螺旋度绝对值增大(减小),一定程度促进(抑制)了该区域上升运动的发展,造成更多(更少)的水汽凝结致雨。  相似文献   

19.
“05.6”华南暴雨中低纬度系统活动及相互作用   总被引:4,自引:2,他引:2       下载免费PDF全文
利用NCEP/NCAR再分析资料、FY-2C卫星逐时云顶亮温资料(分辨率为0.05°×0.05°)及射出长波辐射资料(分辨率为0.5°×0.5°)、实时地面加密观测和实况探空资料等,对"05.6"华南持续性暴雨过程期间南海季风活动、副热带高压演变、冷空气影响、高低空急流耦合等进行深入分析,探讨中低纬度不同尺度系统的活动特征及相互作用。结果表明:"05.6"华南暴雨是在中纬度地区位势高度场稳定的北高南低背景下,由东亚沿岸槽和青藏高原短波系统引导中纬度冷空气与低纬度地区季风系统相互作用下产生的;南海副热带季风的活跃与100°~120°E处越赤道气流通道的消失密切相关,其两次大规模向北推进是过程开始和结束的重要标志;副热带高压较多年平均明显偏南且强度达到最强,700 hPa中纬度冷空气的明显南侵对暴雨过程有重要贡献;高空急流入口区右后方与低空急流左侧由于强烈的高空辐散和非地转平衡强迫,构成一支横跨低空急流的经向次级环流,高低空急流耦合的正反馈机制是华南暴雨异常的重要原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号