首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
The author investigates the prediction of Northeast China’s winter surface air temperature (SAT),and first forecast the year to year increment in the predic-tand and then predict the predictand.Thus,in the first step,we determined the predictors for an increment in winter SAT by analyzing the atmospheric variability associated with an increment in winter SAT.Then,multi-linear re-gression was applied to establish a prediction model for an increment in winter SAT in Northeast China.The pre-diction model shows a high correlation coefficient (0.73) between the simulated and observed annual increments in winter SAT in Northeast China throughout the period 1965-2002,with a relative root mean square error of -7.9%.The prediction model makes a reasonable hindcast for 2003-08,with an average relative root mean square error of -7.2%.The prediction model can capture the in-creasing trend of winter SAT in Northeast China from 1965-2008.The results suggest that this approach to forecasting an annual increment in winter SAT in North-east China would be relevant in operational seasonal forecasts.  相似文献   

2.
Two prediction models are developed to predict the number of landfalling tropical cyclones(LTCs) in China during June–August(JJA). One is a statistical model using preceding predictors from the observation, and the other is a hybrid model using both the aforementioned preceding predictors and concurrent summer large-scale environmental conditions from the NCEP Climate Forecast System version 2(CFSv2).(1) For the statistical model, the year-to-year increment method is adopted to analyze the predictors and their physical processes, and the JJA number of LTCs in China is then predicted by using the previous boreal summer sea surface temperature(SST) in Southwest Indonesia,preceding October South Australia sea level pressure, and winter SST in the Sea of Japan. The temporal correlation coefficient between the observed and predicted number of LTCs during 1983–2017 is 0.63.(2) For the hybrid prediction model, the prediction skill of CFSv2 initiated each month from February to May in capturing the relationships between summer environmental conditions(denoted by seven potential factors: three steering factors and four genesis factors) and the JJA number of LTCs is firstly evaluated. For the 2-and 1-month leads, CFSv2 has successfully reproduced these relationships. For the 4-, 3-, and 2-month leads, the predictor of geopotential height at 500 h Pa over the western North Pacific(WNP) shows the worst forecasting skill among these factors. In general, the summer relative vorticity at 850 h Pa over the WNP is a modest predictor, with stable and good forecasting skills at all lead times.  相似文献   

3.
Predicting the intensity of tropical cyclones(TCs)is challenging in operational weather prediction systems,partly due to the difficulty in defining the initial vortex.In an attempt to solve this problem,this study investigated the effect of initial vortex intensity correction on the prediction of the intensity of TCs by the operational numerical prediction system GRAPES_TYM(Global and Regional Assimilation and Prediction System_Typhoon Model)of the National Meteorological Center of the China Meteorological Administration.The statistical results based on experiments using data for major TCs in 2018 show that initial vortex intensity correction can reduce the errors in mean intensity for up to 120-h integration,with a noticeable decrease in the negative bias of intensity and a slight increase in the mean track error.The correction leads to an increase in the correlation coefficient of Vmax(maximum wind speed at 10-m height)for the severe typhoon and super typhoon stages.Analyses of the errors in intensity at different stages of intensity(including tropical storms,severe tropical storms,typhoons,severe typhoons,and super typhoons)show that vortex intensity correction has a remarkable positive influence on the prediction of super typhoons from 0 to 120h.Analyses of the errors in intensity for TCs with different initial intensities indicate that initial vortex correction can significantly improve the prediction of intensity from 24 to 96 h for weak TCs(including tropical storms and severe tropical storms at the initial time)and up to 24 h for strong TCs(including severe typhoons and super typhoons at the initial time).The effect of the initial vortex intensity correction is more important for developing TCs than for weakening TCs.  相似文献   

4.
The spring (March-April-May) rainfall over northern China (SPRNC) is predicted by using the interannual increment approach. DY denotes the difference between the current year and previous years. The seasonal forecast model for the DY of SPRNC is constructed based on the data that are taken from the 1965-2002 period (38 years), in which six predictors are available no later than the current month of February. This is favorable so that the seasonal forecasts can be made one month ahead. Then, SPRNC and the percentage anomaly of SPRNC are obtained by the predicted DY of SPRNC. The model performs well in the prediction of the inter-annual variation of the DY of SPRNC during 1965-2002, with a correlation coefficient between the predicted and observed DY of SPRNC of 0.87. This accounts for 76% of the total variance, with a low value for the average root mean square error (RMSE) of 20%. Both the results of the hindcast for the period of 2003-2010 (eight years) and the cross-validation test for the period of 1965-2009 (45 years) illustrate the good prediction capability of the model, with a small mean relative error of 10%, an RMSE of 17% and a high rate of coherence of 87.5% for the hindcasts of the percentage anomaly of SPRNC.  相似文献   

5.
A statistical dynamic model for forecasting Chinese landfall of tropical cyclones (CLTCs) was developed based on the empirical relationship between the observed CLTC variability and the hindcast atmospheric circulations from the Pusan National University coupled general circulation model (PNU-CGCM).In the last 31 years,CLTCs have shown strong year-to-year variability,with a maximum frequency in 1994 and a minimum frequency in 1987.Such features were well forecasted by the model.A cross-validation test showed that the correlation between the observed index and the forecasted CLTC index was high,with a coefficient of 0.71.The relative error percentage (16.3%) and root-mean-square error (1.07) were low.Therefore the coupled model performs well in terms of forecasting CLTCs;the model has potential for dynamic forecasting of landfall of tropical cyclones.  相似文献   

6.
 Based on tropical cyclone track dataset in the western North Pacific from China Meteorological Administration (CMA), variations in frequency and intensity of tropical cyclones (TCs) in the western North Pacific, affecting-China TCs (ACTCs) and landfall TCs (LTCs) achieving a typhoon intensity during 1957-2004 were studied. Frequencies of strong tropical cyclones showed significant decreasing trends from 1957 to 2004 and the linear trend was much greater when the intensity was stronger. There was no linear trend in the portion of strong tropical cyclones achieving a typhoon (TY) intensity, while those reaching a strong typhoon (STY) and a super typhoon (SuperTY) intensity showed decreasing trends during 1957-2004. The maximum intensities of TCs, ACTCs and LTCs all decreased during the period of 1957-2004. The mean intensities of TCs and ACTCs displayed decreasing trends and the mean intensity of LTCs achieving a TY intensity also showed a decreasing trend.  相似文献   

7.
The interdecadal variations of tropical cyclones(TCs) and their precipitation over Guangdong Province are investigated using the observational data of TCs and precipitation from 26 observational stations in the province from 1951 to 2005.The results show that the TCs precipitation shows an oscillation with a peak value of about 25 years,with both the numbers of the Guangdong-influencing TCs and TCs formed in the western North Pacific oscillating with a peak value of about 23 years.The correlations are highly positive between the interdecadal variation of TC precipitation over the province and these numbers.The interdecadal variation of TC precipitation in the province shows significant negative correlations with the interdecadal variation of annual mean SST in some parts of the western North Pacific and the interdecadal variation of annual mean 500 hPa geopotential heights in some parts of the middle and high latitudes over the North Pacific.In general,there are high mean SSTs on the equator from central to eastern Pacific,low mean SSTs in the middle and high latitudes over the North Pacific and a main strong East Asian trough over the North Pacific in the period of less TC precipitation as compared with the period of more TC precipitation over the province.  相似文献   

8.
This paper analyzes the complete lifecycle of super typhoons in 2016 in the western North Pacific(WNP) using the deviation angle variance technique(DAV-T). Based on the infrared images from Fengyun(FY) satellites, the DAV-T enables quantification of the axisymmetry of tropical cyclones(TCs) by using the DAV values; and thus, it helps improve the capability of TC intensity estimation. Case analyses of Super Typhoons Lionrock and Meranti were performed to explore the distribution characteristics of the DAV values at the various stages of TC evolution. The results show that the minimum DAV values(i.e., map minimum values: MMVs) gradually decreased and their locations constantly approached the circulation center with enhancement of the TC organization; however, when a ring or disk structure was formed around a TC, significant changes in MMV locations were no longer observed. Nonetheless,when large-scale non-closed deep convective cloud clusters appeared at the early stage or the dissipation stage of the typhoon, the axisymmetry of the TC was poor and the MMV locations tended to lie in the most convective region rather than in the TC circulation center. Overall, the MMVs and their locations, respectively, exhibited a strong correlation with the TC intensity and circulation center, and the correlation increased as the TCs became stronger. Combined with the China Meteorological Administration BestTrack dataset(CMA-BestTrack), statistical analysis of all research samples reveals that the correlation coefficient between the MMVs and maximum surface wind speeds(Vmax) was –0.80; the root mean square error(RMSE) of relative distance between the MMV locations and TC centers was 140.3 km; and especially, when the samples below the tropical depression(TD) intensity were removed, the RMSE of the relative distance decreased dramatically to 95.0 km. The value and location of the MMVs could be used as important indicators for estimating TC intensity and center.  相似文献   

9.
The boreal spring Antarctic Oscillation(AAO) has a significant impact on the spring and summer climate in China. This study evaluates the capability of the NCEP's Climate Forecast System, version 2(CFSv2), in predicting the boreal spring AAO for the period 1983–2015. The results indicate that CFSv2 has poor skill in predicting the spring AAO, failing to predict the zonally symmetric spatial pattern of the AAO, with an insignificant correlation of 0.02 between the predicted and observed AAO Index(AAOI). Considering the interannual increment approach can amplify the prediction signals, we firstly establish a dynamical–statistical model to improve the interannual increment of the AAOI(DY AAOI), with two predictors of CFSv2-forecasted concurrent spring sea surface temperatures and observed preceding autumn sea ice. This dynamical–statistical model demonstrates good capability in predicting DY AAOI, with a significant correlation coefficient of 0.58 between the observation and prediction during 1983–2015 in the two-year-out cross-validation. Then, we obtain an improved AAOI by adding the improved DY AAOI to the preceding observed AAOI. The improved AAOI shows a significant correlation coefficient of 0.45 with the observed AAOI during 1983–2015. Moreover, the unrealistic atmospheric response to March–April–May sea ice in CFSv2 may be the possible cause for the failure of CFSv2 to predict the AAO. This study gives new clues regarding AAO prediction and short-term climate prediction.  相似文献   

10.
Relationships between large-scale zonal wind anomalies and annual frequency of NW Pacific tropical cyclones and possible mechanisms are investigated with the methods of correlation and composition.It is indicated that when △ U200-△U850 >0 in the eastern tropical Pacific and △ U200- △U850 <0 in western tropical Pacific, the Walker cell is stronger in the Pacific tropical region and the annual frequency of NW Pacific tropical cyclone are above normal. In the years with zonal wind anomalies, the circulation of high and low troposphere and the vertical motions in the troposphere have significant characteristics. In the time scale of short-range climate prediction, zonal wind anomalies in high and low troposphere are useful as a preliminary signal of the annual frequency prediction of NW Pacific tropical cyclones.  相似文献   

11.
We present a model for predicting summertime surface air temperature in Northeast China (NESSAT) using a year-to-year incremental approach. The predicted value for each year's increase or decrease of NESSAT is added to the observed value within a particular year to yield the net forecast NESSAT. The seasonal forecast model for the year-to-year increments of NESSAT is constructed based on data from 1975-2007. Five predictors are used: an index for sea ice cover over the East Siberian Sea, an index for central Pacific tropical sea surface temperature, two high latitude circulation indices, as well as a North American pressure index. All predictors are available by no later than March, which allows for compilation of a seasonal forecast with a two-month lead time. The prediction model accurately captures the interannual variations of NESSAT during 1977-2007 with a correlation coefficient between the predicted and observed NESSAT of 0.87 (accounting for 76% of total variance) and a mean absolute error (MAE) of 0.3℃. A cross-validation test during 1977 2008 demonstrates that the model has good predictive skill, with MAE of 0.4℃ and a correlation coefficient between the predicted and observed NESSAT of 0.76.  相似文献   

12.
利用人工神经网络模型预测西北太平洋热带气旋生成频数   总被引:1,自引:0,他引:1  
通过对60年(1950~2009年)北半球夏、秋季(6~10月)热带气旋(TC)频数与春季(3~5月)大尺度环境变量的相关分析,挑选出8个相关性较高的前期预报因子建立人工神经网络(ANN)模型,对2010~2017年8年夏、秋季TC频数进行回报,并将回报结果与传统多元线性回归(MLR)方法所得结果进行对比分析。结果表明,ANN模型对60年历史数据的拟合精度高,相关系数高达0.99,平均绝对误差低至0.77。在8年回报中,ANN模型相关系数为0.80,平均绝对误差为1.97;而MLR模型相关系数仅为0.46,平均绝对误差为3.30。ANN模型在历史数据拟合和回报中的表现都明显优于MLR模型,未来可考虑应用于实际的业务预测中。  相似文献   

13.
Based on tropical cyclone track dataset in the western North Pacific from China Meteorological Administration(CMA),variations in frequency and intensity of tropical cyclones(TCs)in the western North Pacific,affecting-China TCs(ACTCs)and landfall TCs(LTCs)achieving a typhoon intensity during 1957-2004 were studied.Frequencies of strong tropical cyclones showed significant decreasing trends from 1957 to 2004 and the linear trend was much greater when the intensity was stronger.There was no linear trend in the portion of strong tropical cyclones achieving a typhoon(TY)intensity,while those reaching a strong typhoon(STY)and a super typhoon(SuperTY)intensity showed decreasing trends during 1957-2004.The maximum intensities of TCs,ACTCs and LTCs all decreased during the period of 1957-2004.The mean intensities of TCs and ACTCs displayed decreasing trends and the mean intensity of LTCs achieving a TY intensity also showed a decreasing trend.  相似文献   

14.
1957-2004年影响我国的强热带气旋频数和强度变化   总被引:2,自引:0,他引:2  
以中国气象局西北太平洋热带气旋资料为基础,分析1957-2004年影响我国并达到台风强度以上的三类热带气旋,即生成热带气旋、影响热带气旋和登陆热带气旋的频数和强度的变化。结果表明:强热带气旋频数在1957-2004年间呈显著减少趋势,强度越强,其减少趋势越明显。近50 a台风以上强度的强热带气旋频次占总频次的比例没有明显的增加或减少趋势,强台风和超强台风比例呈减少趋势。1957-2004年热带气旋的最大强度呈线性减弱趋势,生成热带气旋和影响热带气旋的平均强度亦呈减弱趋势,登陆台风的平均强度也呈减弱趋势。  相似文献   

15.
A new empirical approach for the seasonal prediction of annual Atlantic tropical storm number (ATSN) was developed using precipitation and 500 hPa geopotential height data from the preceding January-February and April-May. The 2.5º×2.5º resolution reanalysis data from both the US National Center for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) and the European Center for Medium-Range Weather Forecasting (ECMWF) were applied. The model was cross-validated using data from 1979-2002. The ATSN predictions from the two reanalysis models were correlated with the observations with the anomaly correlation coefficients (ACC) of 0.79 (NCEP/NCAR) and 0.78 (ECMWF) and the multi-year mean absolute prediction errors (MAE) of 1.85 and 1.76, respectively. When the predictions of the two models were averaged, the ACC increased to 0.90 and the MAE decreased to 1.18, an exceptionally high score. Therefore, this new empirical approach has the potential to improve the operational prediction of the annual tropical Atlantic storm frequency.  相似文献   

16.
利用2007—2009年热带降雨测量卫星(TRMM)微波成像仪(TMI)观测的亮温资料,建立一种西北太平洋热带气旋强度(Tropical Cyclone,TC)的估计模型,对2010年热带气旋进行独立估计试验,并对估计误差进行分析。结果表明:该模型对强度小于强台风TC的拟合效果较好,均方根误差约为5 m/s,平均绝对误差约为4 m/s;对强台风和超强台风TC的拟合误差较大,均方根误差分别为9.65和6.60 m/s,平均绝对误差分别为7.76和5.49 m/s;对强台风及以上强度的TC,模型的拟合误差在日(夜)间减小(增大),误差最小(大)值为6.00 m/s(11.96 m/s),说明估计值在日(夜)间偏大(小)。  相似文献   

17.
淮河流域夏季极端降水事件的统计预测模型研究   总被引:3,自引:1,他引:2  
采用年际增量预测方法, 通过考察与淮河流域夏季极端降水事件发生频次(HRF)年际增量相关的环流, 确定了5个预测因子:冬季北太平洋涛动、12月南极涛动、春季3~4月南印度洋气压、春季3~4月白令海气压、春季3~4月印尼—澳洲附近经向风垂直切变;然后利用这5个预测因子, 通过多元线性回归方法建立HRF年际增量的预测模型, 进而预测HRF。交叉检验表明, 在1962~2005年的后报中, 这个预测模型对HRF显示了较高的预测技巧, 预测结果与实测间的相关系数为0.67, 表现出较高的预测潜力, 对淮河流域夏季极端降水事件的预测具有较大的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号