首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碳捕集与封存(CCS)技术作为解决全球气候变化问题的重要手段之一,能够有效减少CO2排放。中国作为碳排放大国,当前电力的主要来源仍是煤电,碳捕集(CC)改造在燃煤电厂中有很大的应用潜力。经济性对CC改造的部署至关重要。为此,本文计算了中国各省典型电厂CC改造前后的平准化度电成本,比较了不同省份的CO2捕集成本与CO2避免成本,分析了不同掺烧率下生物质掺烧结合碳捕集(bioenergy with carbon capture,BECC)改造的经济性。研究发现,CC改造会导致不同地区的燃煤电厂度电成本增加57.51%~93.38%。煤价较低的华北和西北地区(青海除外)CC改造经济性较好,BECC改造则更适合华中地区。建议在推进燃煤电厂CC和BECC改造时要充分考虑区域资源特点,完善碳市场建设,形成合理碳价以促进CC和BECC部署。  相似文献   

2.
This paper uses the EMF27 scenarios to explore the role of renewable energy (RE) in climate change mitigation. Currently RE supplies almost 20 % of global electricity demand. Almost all EMF27 mitigation scenarios show a strong increase in renewable power production, with a substantial ramp-up of wind and solar power deployment. In many scenarios, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive even without climate policy, whereas the prospects of solar photovoltaics (PV) are highly contingent on the ambitiousness of climate policy. Bioenergy is an important and versatile energy carrier; however—with the exception of low temperature heat—there is less scope for renewables other than biomass for non-electric energy supply. Despite the important role of wind and solar power in climate change mitigation scenarios with full technology availability, limiting their deployment has a relatively small effect on mitigation costs, if nuclear and carbon capture and storage (CCS)—which can serve as substitutes in low-carbon power supply—are available. Limited bioenergy availability in combination with limited wind and solar power by contrast, results in a more substantial increase in mitigation costs. While a number of robust insights emerge, the results on renewable energy deployment levels vary considerably across the models. An in-depth analysis of a subset of EMF27 reveals substantial differences in modeling approaches and parameter assumptions. To a certain degree, differences in model results can be attributed to different assumptions about technology costs, resource potentials and systems integration.  相似文献   

3.
In the wake of the Fukushima nuclear accident, countries like Germany and Japan have planned a phase-out of nuclear generation. Carbon capture and storage (CCS) technology has yet to become a commercially viable technology with little prospect of doing so without strong climate policy to spur development. The possibility of using renewable power generation from wind and solar as a non-emitting alternative to replace a nuclear phase-out or failure to deploy CCS technology is investigated using scenarios from EMF27 and the POLES model. A strong carbon price appears necessary to have significant penetration of renewables regardless of alternative generation technologies available, but especially if nuclear or CCS are absent from the energy supply system. The feasibility of replacing nuclear generation appears possible at realistic costs (evaluated as total abatement costs and final user prices to households); however for ambitious climate policies, such as a 450 ppm target, CCS could represent a critical technology that renewables will not be able to fully replace without unbearable economic costs.  相似文献   

4.
Together, the U.S. and China emit roughly 40% of world's greenhouse gas emissions, and these nations have stated their desire to reduce absolute emissions (U.S.) or reduce the carbon intensity of the economy (China). However, both countries are dependent on coal for a large portion of their energy needs, which is projected to continue over the next several decades. They also have large amounts of coal resources, coal-dependent electricity production, and in China's case, extensive use of coal in the industrial sector, making any shift from coal socio-politically difficult. Both nations could use carbon capture and storage (CCS) technologies to simultaneously decrease greenhouse gas emissions and continue the use of domestic coal resources; however, the socio-political context for CCS deployment differs substantially between the two countries and potentially makes large-scale CCS deployment challenging. Here, we examine and compare the political and institutional contexts shaping CCS policy and CCS deployment, both for initial pilot projects and for the creation of large-scale CCS technology deployment, and analyze how the socio-political context for CCS in China and the United States aligns with national climate, energy security, and economic priorities.  相似文献   

5.
The feasibility of two low-carbon society (LCS) scenarios, one with and one without nuclear power and carbon capture and storage (CCS), is evaluated using the AIM/Enduse[Global] model. Both scenarios suggest that achieving a 50% emissions reduction target (relative to 1990 levels) by 2050 is technically feasible if locally suited technologies are introduced and the relevant policies, including necessary financial transfers, are appropriately implemented. In the scenario that includes nuclear and CCS options, it will be vital to consider the risks and acceptance of these technologies. In the scenario without these technologies, the challenge will be how to reduce energy service demand. In both scenarios, the estimated investment costs will be higher in non-Annex I countries than in Annex I countries. Finally, the enhancement of capacity building to support the deployment of locally suited technologies will be central to achieving an LCS.

Policy relevance

Policies to reduce GHG emissions up to 2050 are critical if the long-term target of stabilizing the climate is to be achieved. From a policy perspective, the cost and social acceptability of the policy used to reduce emissions are two of the key factors in determining the optimal pathways to achieve this. However, the nuclear accident at Fukushima highlighted the risk of depending on large-scale technologies for the provision of energy and has led to a backlash against the use of nuclear technology. It is found that if nuclear and CCS are used it will be technically feasible to halve GHG emissions by 2050, although very costly. However, although the cost of halving emissions will be about the same if neither nuclear nor CCS is used, a 50% reduction in emissions reduction will not be achievable unless the demand for energy service is substantially reduced.  相似文献   

6.
This paper evaluated the impacts of climate change mitigation technology options on CO2 emission reductions and the effects of model representations regarding renewable intermittency on the assessment of reduction by using a world energy systems model. First, different diffusion scenarios for carbon dioxide capture and storage (CCS), nuclear power, and wind power and solar PV are selected from EMF27 scenarios to analyze their impacts on CO2 emission reductions. These technologies are important for reducing CO2 intensity of electricity, and the impacts of their diffusion levels on mitigation costs are significant, according to the analyses. Availability of CCS in particular, among the three kinds of technologies, has a large impact on the marginal CO2 abatement cost. In order to analyze effects of model representations regarding renewables intermittency, four different representations are assumed within the model. A simplistic model representation that does not take into consideration the intermittency of wind power and solar PV evaluates larger contributions of the energy sources than those evaluated by a model representation that takes intermittency into consideration. Appropriate consideration of renewables intermittency within global energy systems models will be important for realistic evaluations of climate change mitigation scenarios.  相似文献   

7.
China's 12th Five-Year Plan (2011–2015) envisages that shale gas and coal will be central to its energy future. However, for China to meet the energy security and climate change objectives set out in its 12th Five-Year Plan it will be reliant on the widespread commercial deployment of two key technologies; hydraulic fracturing combined with horizontal drilling for shale gas, and carbon capture and storage (CCS) for coal. China is moving to acquire these technologies through technology transfer and diffusion from the US, but progress has been slow, and neither is currently available in China on a commercial scale. Drawing on interviews in the US and China, this article argues that China's expectation of technology from the US may well be disappointed because of factors unique to the US institutional environment that have made the development of fracking technology possible and hinder the development of CCS technology at a commercial scale.

Policy relevance

If China is to meet the energy security and climate change objectives set out in its 12th Five-Year Plan it will be reliant on the widespread commercial deployment of fracking and clean coal technologies. While China expects to acquire these technologies via technology transfer and diffusion from the US, progress has been slow. Because of factors unique to the US institutional environment the availability of both technologies on a commercial scale in China is unlikely in the coming years. As a result, Chinese policy makers would be well-advised not to count on these technologies to meet their energy and climate goals.  相似文献   

8.
In this paper, we assessed the technological feasibility and economic viability of the mid-term (until 2050) GHG emission reduction target required for stabilization of radiative forcing at 2.6 W/m2. Given the apparent uncertainty surrounding the future deployment of nuclear and CCS technologies, we intensively investigated emission reduction scenarios without nuclear and CCS. The analysis using AIM/Enduse[Global] shows the emission reduction target is technologically feasible, but the cost for achieving the target becomes very high if nuclear and CCS options are limited. The main reason for the cost rise is that additional investment for expensive technologies is required in order to compensate for emission increases in the steel, cement and power generation sectors in the absence of CCS. On the other hand, if material efficiency improvement measures, such as material substitution, efficient use of materials and recycling, are taken, the cost of achieving the emission reduction target is significantly reduced. The result indicates the potentially important role of material efficiency improvement in curbing the cost of significant GHG emission reductions without depending on nuclear and CCS.  相似文献   

9.
Carbon capture and storage (CCS) is increasingly depicted as an important element of the carbon dioxide mitigation portfolio. However, critics have warned that CCS might lead to “reinforced fossil fuel lock-in”, by perpetuating a fossil fuel based energy provision system. Due to large-scale investments in CCS infrastructure, the fossil fuel based ‘regime’ would be perpetuated to at least the end of this century.In this paper we investigate if and how CCS could help to avoid reinforcing fossil fuel lock-in. First we develop a set of criteria to estimate the degree of technological lock-in. We apply these criteria to assess the lock-in reinforcement effect of adding CCS to the fossil fuel socio-technical regime (FFR).In principle, carbon dioxide could be captured from any carbon dioxide point source. In the practice of present technological innovations, business strategies, and policy developments, CCS is most often coupled to coal power plants. However, there are many point sources of carbon dioxide that are not directly related to coal or even fossil fuels. For instance, many forms of bio-energy or biomass-based processes generate significant streams of carbon dioxide emissions. Capturing this carbon dioxide which was originally sequestered in biomass could lead to negative carbon dioxide emissions.We use the functional approach of technical innovations systems (TIS) to estimate in more detail the strengths of the “niches” CCS and Bio-Energy with CCS (BECCS). We also assess the orientation of the CCS niche towards the FFR and the risk of crowding out BECCS. Next we develop pathways for developing fossil energy carbon capture and storage, BECCS, and combinations of them, using transition pathways concepts. The outcome is that a large-scale BECCS development could be feasible under certain conditions, thus largely avoiding the risk of reinforced fossil fuel lock-in.  相似文献   

10.
中国新能源发电生命周期温室气体减排潜力比较和分析   总被引:1,自引:0,他引:1  
从生命周期的角度分析,各类新能源发电技术的开发、建设、运行过程,也会带来一定的温室气体排放,这引发了人们对于新能源发电技术“低碳”属性的担忧。遵循生命周期评价方法,在对国内外大量资料文献进行收集整理的基础上,对中国传统火电和主要新能源发电技术的温室气体排放系数进行了对比分析;并根据国家发展规划目标,对新能源发电替代火电的温室气体减排潜力进行了估算。分析结果表明,即使考虑生命周期内的排放,新能源发电技术的温室气体排放系数仍远远低于火电,新能源发电技术替代火电的温室气体减排潜力巨大。  相似文献   

11.
This article gives a detailed account of part of the modelling that was carried out for the assessment of the EU's proposed energy and climate targets for 2030. Using the macro-econometric simulation model, E3ME, and drawing on results from the PRIMES energy systems model, it shows that a 40% reduction in GHG emissions (compared to 1990 levels) could lead to an increase in employment of up to 0.7 million jobs in Europe. Furthermore, if the same GHG reduction target was combined with targets for renewables and energy efficiency, the net increase in jobs could be as high as 1.2 million. Both results are in contrast to the standard findings from computable general equilibrium (CGE) models, reflecting the different underlying assumptions (e.g. labour supply) to the modelling approach. Additional sensitivity testing shows that the ways in which the energy efficiency and renewable measures are funded are important factors in determining overall economic impact.

Policy relevance

In recent years there has been much debate as to whether the European Union should have a single GHG reduction target or a set of targets that also cover renewables and energy efficiency. This paper elaborates on part of the modelling that was carried out for the official assessment of the European Union's proposed energy and climate targets for 2030. Using an empirical, model-based approach, it compares a scenario where there is a single 40% GHG reduction target to a scenario that also includes a 30% renewables target and stricter energy efficiency standards. The model results show that the large investment stimulus needed to meet the combined targets leads to higher levels of GDP and employment. This suggests that there could be medium-term economic and social benefits to including all three targets in the future energy and climate package.  相似文献   

12.
推动电力行业低碳发展是中国有效控制CO2排放和推动尽早达峰的重要抓手。在分别利用学习曲线工具和自下而上技术核算方式分析风电、光伏两类主要的可再生电力和其他各类电源发展趋势的基础上,综合评估了既有政策和强化政策条件下2035年前中国电力行业能源活动碳排放变化趋势。研究发现,既有政策情景下电力行业碳排放在2030年左右达到峰值,届时非化石能源在发电量中比重为44%,而通过强化推动能源绿色低碳发展的相关政策,2025年前即可达到电力行业碳排放峰值,2030年非化石电力在发电量中比重可以提升至51%,其中可再生电力加速发展将分别贡献2025、2030和2035年当年减排量(相对于既有政策情景)的45%、54%和62%。尽管从保障电力稳定安全供应角度,煤电装机仍有一定增长空间,但考虑到电力行业绿色低碳和可持续发展的长期需求,仍应加强对煤电装机的有效控制,“十四五”期间努力将煤电装机控制在11亿kW左右的水平。  相似文献   

13.
Abstract

Fossil fuel combustion is the largest source of anthropogenic greenhouse gas (GHG) emissions. As a result of combustion, essentially all of the fuel carbon is emitted to the atmosphere as carbon dioxide (CO2), along with small amounts of methane and, in some cases, nitrous oxide. It has been axiomatic that reducing anthropogenic GHG emissions requires reducing fossil-fuel use. However, that relationship may no longer be as highly coupled in the future. There is an emerging understanding that CO2 capture and storage (CCS) technology offers a way of using fossil fuels while reducing CO2 emissions by 85% or more. While CCS is not the ‘silver bullet’ that in and of itself will solve the climate change problem, it is a powerful addition to the portfolio of technologies that will be needed to address climate change. The goal of this Commentary is to describe CCS technology in simple terms: how it might be used, how it might fit into longer term mitigation strategies, and finally, the policy issues that its emergence creates. All of these topics are discussed in much greater detail in the recently published Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (SRCCS) (IPCC, 2005).  相似文献   

14.
Carbon Capture and Storage (CCS) can be a valuable CO2 mitigation option, but what role CCS will play in the future is uncertain. In this paper we analyze the results of different integrated assessment models (IAMs) taking part in the 27th round of the Energy Modeling Forum (EMF) with respect to the role of CCS in long term mitigation scenarios. Specifically we look into the use of CCS as a function of time, mitigation targets, availability of renewables and its use with different fuels. Furthermore, we explore the possibility to relate model results to general and CCS specific model assumptions. The results show a wide range of cumulative capture in the 2010–2100 period (600–3050 GtCO2), but the fact that no model projects less than 600 GtCO2 indicates that CCS is considered to be important by all these models. Interestingly, CCS storage rates are often projected to be still increasing in the second half of this century. Depending on the scenario, at least six out of eight, up to all models show higher storage rates in 2100 than in 2050. CCS shares in cumulative primary energy use are in most models increasing with the stringency of the target or under conservative availability of renewables. The strong variations of CCS deployment projection rates could not be related to the reported differences in the assumptions of the models by means of a cross-model comparison in this sample.  相似文献   

15.
We explore the relationship between political ideology and public attitudes towards a range of energy technologies (namely: biomass, coal, shale (or coal seam) gas, natural gas, carbon capture and storage, hydroelectricity, nuclear, solar thermal and photovoltaic, wave and wind energy). Our empirical analysis draws on the results of two similar nationally representative public surveys that were conducted in Australia and the UK in 2017. Our findings suggest that political ideology is significantly associated with public attitudes towards energy technologies. Specifically, supporters of left-leaning political parties tend to be more supportive of renewables and opposed to biomass, shale (coal seam) gas, nuclear and fossil fuel energies compared to right-leaning individuals. We also create an alternative ideological proxy to capture the relative emphasis that parties place on the environment and economy and find that supporters of environmentally focused parties generally express similar energy preferences to left-leaning individuals and economy-focused respondents align with right-leaning attitudes. Our findings are robust to different choices of proxy.  相似文献   

16.
分析、解读了IPCC第五次评估报告对能源供应,工业,交通,建筑,农业、林业和其他土地利用(AFOLU)等部门温室气体和CO2减排途径和措施评估的主要结论。2000年以来,除了AFOLU,其他部门的温室气体排放量一直在增长。在增加的排放量中能源系统、工业、交通运输和建筑部门分别贡献了47%、30%、11%和3%。未来,这些部门仍将是全球温室气体的主要排放源和减排的重点领域。通过推进技术进步,持续提高能源效率,进一步优化能源结构,提高碳排放效率,提高原材料使用效率,强化废物管理,提高产品使用效率,减少对产品及相应服务的需求以及广泛利用碳捕获与封存和CO2去除技术,到2050年与基准情景相比,这些部门的CO2排放量可减少15%~80%。所有这些减排措施对我国主要部门减排CO2均具有借鉴意义。  相似文献   

17.
碳中和已成为引领中国中长期可持续发展的纲领性目标.通过对已有研究成果的梳理与评述,从目标内涵和实现路径两个方面探讨了"碳中和是一场广泛而深刻的经济社会系统性变革"这一重要命题.中国碳中和目标与全球温控2℃/1.5℃目标内涵一致,需要以阶段性减排成效为基础制定中期行动方案来逐步实现长期减排目标.作为实现碳中和目标的两个主...  相似文献   

18.
The question of whether China is on the verge of a ‘shale gas revolution’ is examined. This has potentially significant consequences for energy policy and climate change mitigation. Contrary to the optimistic reading of some commentators, it argues that various technological, environmental, political, regulatory and institutional factors will constrain the growth of China's shale gas market and that such a revolution might in any event have consequences that are at best mixed, at worst antithetical to climate change mitigation.Policy relevanceChina's reserves of unconventional gas have the potential to transform energy policy, as has occurred in the US, resulting in the substitution of shale gas for coal in the energy mix. Because gas emits only approximately half the GHG per unit as coal, such a move would have important implications for climate policy. However, substantial obstacles stand in the way of the ‘energy revolution’ that some policy analysts see China as embarking upon. The need to acknowledge these obstacles, particularly those relating to regulation and governance (and whether or to what extent they can be overcome), is an issue of profound importance to the future of climate and energy policy.  相似文献   

19.
Attaining deep greenhouse gas (GHG) emission reductions in industry in order to support a stringent climate change control target will be difficult without recourse to CO2 capture and storage (CCS). Using the insights from a long-term bottom-up energy systems model, and undertaking a sectoral assessment, we investigated the importance of CCS in the industrial sector. Under climate policy aimed at limiting atmospheric concentration of GHGs to 650 ppm CO2e, costs could increase fivefold when CCS is excluded from the portfolio of mitigation option measures in the industry sector as compared to when CCS is excluded in the power sector. This effect is driven largely by the lack of alternatives for deep emission reductions in industry. Our main policy conclusion is that a broader recognition of CCS in industrial applications in both current policy discussions and research, development, and demonstration funding programmes is justified. In recognition of the heterogeneity of the many types of industrial production processes, the size and location of industrial CO2 sources, the specific need for CCS-retrofitting, and the exposure of most industrial sectors to international trade, policies aimed at supporting CCS must distinguish between the different challenges faced by the power and industrial sectors.  相似文献   

20.
As a hard-to-abate sector, the iron and steel industry is responsible for 22% of China’s total carbon emissions and therefore plays a crucial role in achieving China’s carbon peaking and neutrality target. Nearly 90% of China’s iron and steel output is produced with coal-based blast furnaces, which results in high carbon emission intensity. To peak China’s carbon emissions and achieve the carbon neutrality target, it is essential to accelerate the application of breakthrough technologies such as carbon capture and storage (CCS) and hydrogen-based steel-making. This paper estimates the future CO2 emissions from China’s iron and steel industry in pathways that consider the influence of different technology portfolios, technology maturity, decarbonization of power systems, and future steel production output. The results show that using currently available technology, China’s iron and steel industry can reduce CO2 emissions by more than 50%. However, it cannot achieve the neutrality target without using innovative technologies. By combining conventional strategies with net-zero emission technologies such as CCS and hydrogen metallurgy, approximately 80–90% emission reduction can be achieved, thus leading to a carbon neutrality pathway, which can meet the 1.5°C targets of the carbon budget limit either. In the future, carbon emissions' reduction potential will be influenced by the decarbonization of power systems and the diffusion rate of innovative technologies. To achieve carbon neutrality, it is essential to act sooner and faster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号