首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
半干旱区植被覆盖度对边界层气候热力影响的数值模拟   总被引:14,自引:0,他引:14  
在陆-气相互作用的中小尺度系统研究中,水平非均匀下垫面的强迫作用是主要的物理过程。本文利用能量闭合二维陆面过程与大气边界层耦合模式,研究了我国西北半干旱地区(38°N,105°E)夏季下垫面物理特征的变化对区域边界层气候的影响。结果表明:土壤湿度、植被覆盖度对局地环流和区域边界层气候的形成起着决定性的作用。模拟结果揭示了在半干旱地区大面积植树造林、提高植被覆盖度,可涵养土壤水分,改善局地生态环境,是人工持续改造干旱、半干旱荒漠地区局地气候的重要途径。  相似文献   

2.
用修改的Nickerson等提出的中尺度模式,对我国北方夏季非均一下垫面上的边界层气候特征进行了研究。结果表明,在晴朗、静风和无扰动系统的条件下,下垫面的非均一性对边界层气候起着决定性的影响。边界层气候特征和低空急流强度与局地环流关系密切。干燥裸地上边界层内出现的逆湿现象,是由下垫面非均一的湿度场和中尺度平流共同引起的。  相似文献   

3.
用修改的 Nickerson 等提出的中尺度模式,对我国北方夏季非均一下垫面上的边界层气候特征进行了研究。结果表明,在晴朗、静风和无扰动系统的条件下,下垫面的非均一性对边界层气候起着决定性的影响。边界层气候特征和低空急流强度与局地环流关系密切。干燥裸地上边界层内出现的逆湿现象,是由下垫面非均一的湿度场和中尺度平流共同引起的。  相似文献   

4.
陆面面积平均通量的参数化问   总被引:5,自引:0,他引:5  
目前,气候和大气边界层物理研究中一个十分重要的研究方向就是面积平均通量的参数化问题。本文对这一研究方向中存在的问题、可能的解决方法和目前的研究进展情况进行了阐述,简要介绍了非均匀陆面影响的高度及其尺度划分,阐述了混合高度、参考层高度(观测高度和模式第一层高度)、近地层高度、内边界层高度、平衡层高度、粗糙度副层和边界层高度等之间的关系及其在非均匀尺度划分中的作用,并且阐述了整体输送公式在不同尺度的非均匀陆面中存在的问题及相应的可能解决办法。同时还对中尺度的非均匀陆面驱动的一类非经典中尺度环流的参数化,即中尺度通量的参数化问题进行了评述。最后针对内蒙古草原实验和青藏高原实验等具体问题,提出了边界层观测和非均匀陆面参数化方法的几点问题。  相似文献   

5.
青藏高原云的气候学特征   总被引:31,自引:12,他引:31  
魏丽  钟强 《高原气象》1997,16(1):10-15
利用国际卫星云气候计划(ISCCP)获取的1983年7月~1990年6月2.5°×2.5°分辨率的云气候资料以及Hahn等整理的1971~1981年5°×5°分辨率地面观测云气候资料,综合分析了青藏高原地区冬季和夏季云的水平和垂直分布特征,从而为检验大气环境或气候模式的云模拟能力及进一步研究青藏高原地区云辐射相互作用对气候的影响提供背景依据。  相似文献   

6.
陈万隆  陈宇能  陈江 《气象学报》1992,50(4):452-458
本文主要用修改的Nickerson等(1986)提出的中尺度模式,研究了在我国北方(49°19′N,119°55′E)草原开垦地所形成的行星边界层。其基本结果是:1)正午开垦地的“热岛”强度达4—6℃。下垫面的热力扰动可达700m高度,而对流扰动可达行星边界层顶,对流速度为1-2cm·s~(-1);2)一旦草原被大范围开垦,其边界层气候就会朝干热方向演变;3)灌溉可以减轻开垦地的“热岛”强度和旱情,但不能阻止气候的干热化过程,4)行星边界层内局地环流的方向在一昼夜内保持不变,即低层150—200m高度以下的气流由草原吹向开垦地,风速达2m·s~(-1)左右,上层为返回气流,速度略小于下层。草原上的湿气流在水平方向伸入开垦地可达30-50km。  相似文献   

7.
2015年5月19—20日华南地区不同性质暴雨成因和预报分析   总被引:3,自引:3,他引:0  
孔期  林建 《气象》2017,43(7):792-803
利用常规地面、高空和自动站观测资料以及NCEP 1°×1°逐6 h再分析资料,结合多普勒雷达回波和卫星资料,对比分析了2015年5月19—20日华南暴雨过程中不同性质暴雨对应的天气背景、垂直结构特征及直接造成暴雨的中尺度对流系统活动特征。结果表明:此次华南暴雨过程3个强降水中心分别与3个中尺度对流系统相关。(1)广西北部在850 hPa低涡切变线及α中尺度锋面气旋影响下,暴雨区斜压锋生结构明显,整层大气强烈上升。地面冷锋后中尺度线状对流活跃,排列紧密,持续时间较长,降雨量大。大尺度模式有较高的可参考性。(2)广东中北部暴雨区受边界层弱冷空气触发,线状对流系统在其南侧高温高湿环境中新生并传播,排列松散,移动速度较快,总降雨量不及广西北部,但局部雨强突出。边界层中尺度辐合线及γ中尺度气旋对强降水起重要作用。中尺度模式有一定的反映,预报难度较大。(3)广东东南部暴雨由暖区边界层风速辐合及地形海岸线作用产生,其降水质心低,降水效率高。模式的预报能力十分有限。针对不同特点的暴雨预报,数值模式的预报能力不同,而预报员在对天气特征准确把握的基础上,综合考虑不同数值模式的结果,有望得到更准确的预报。  相似文献   

8.
本文利用复杂地形条件下嵌套网格预报模式和欧洲中心(ECMWF)2.5°×2.5°的全球网格点资料,对“81.7”四川大暴雨进行了单向影响粗细网格嵌套48小时的个例预报试验;并根据滤波原理,利用最佳高通滤波器,将风场、位势高度场和温度场进行了中尺度分离。结果表明:本模式较好地预报了造成这次暴雨的中尺度系统发生、发展的过程;并对动力和热力影响作了一些粗浅的分析,本模式较好地描述了暴雨天气,细网格预报在某些方面有进一步改进。该尺度分离方法也能在扰动发展的早期阶段就能从大尺度背景场中将西南涡等中尺度系统清晰地分离出来,使我们能对影响这次暴雨的中尺度系统有进一步的认识。  相似文献   

9.
本工作发展了一个用于研究热带海洋大气系统相互作用和ElNin~o/SouthernOs-cilation动力过程的混合型(hybrid)耦合模式,其中的大气部分为一个由一阶斜压模表示的自由大气和混合行星边界层所组成的简单热带大气模式(区域为热带太平洋:120°E~80°W,30°N~30°S;水平分辨率为2°×2°),海洋部分为大气物理研究所高分辨率自由表面热带太平洋环流模式(经纬圈方向水平分辨率分别为1°和2°,垂直方向分为不等距的14层)。两模式间的耦合是这样进行的:简单大气模式计算出海表风应力,热通量由松弛公式计算,淡水通量(蒸发与降水之差)由观测资料给定,它们一起作为海洋环流模式(OGCM)的强迫场;而OGCM计算出海表温度(SST),在其以外地区给定观测到的气候海表温度或陆地温度,作为大气模式的边界条件。本文给出采用逐日、同步耦合方案时模式对热带太平洋气候态模拟结果,表明未采用任何通量修正(fluxescorrection),耦合模式未出现气候漂移(climatedrift)现象,并且非常逼真地再现了热带太平洋气候态,特别是海表风场及相伴随的辐合带和降水、海表温度和流场及它们的季节变化。文中还进行  相似文献   

10.
中尺度数值模拟中的边界层多尺度湍流参数化方案   总被引:5,自引:1,他引:5       下载免费PDF全文
该文在多尺度湍流理论的研究成果基础上, 将边界层湍流风谱与平均量的梯度相联系, 建立了边界层多尺度湍流参数化子模式, 之后放入MM5模式中进行了个例模拟研究, 并与MM5模式附带的M RF边界层参数化、Blackadar高分辨率边界层参数化的模拟结果进行比较和分析。结果表明, 多尺度湍流理论能够反映出实际大气边界层中热量垂直输送的规律, 将其用于中尺度数值预报模式的边界层物理过程参数化是可行的; 多尺度湍流参数化在地表层和边界层内各个层次上都着重考虑含能量最大的涡的作用以及水平热力不均匀性的影响, 因此在地形和下垫面比较复杂的区域, 对中尺度天气系统的模拟有进一步发展的前景。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

17.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

18.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

19.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号