首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 126 毫秒
1.
采用NCEP/NCAR再分析资料、FY2E-TBB及台站降水资料,对2011年南海夏季风爆发前后的环流特征进行分析。结果表明:2011年强对流活动由孟加拉湾扩展到南海地区,同时伴随着南亚高压移至中南半岛北部,西太平洋副热带高压向东撤出南海地区,南海夏季风于5月第4候(第28候)爆发;季风爆发后,印度-孟加拉湾季风槽形成,南海地区低空开始盛行西南气流,并伴有对流降水的发展和温、湿等要素的突变。随着季风活动的推进,我国雨带北抬,长江中下游一带进入梅雨期,出现降水大值区。通过分析发现长江中下游梅雨与南海夏季风均受副热带高压影响,且两者的强度为显著的负相关关系,梅雨开始时间与南海夏季风爆发时间呈显著的正相关关系。2011年南海夏季风偏弱,爆发时间偏早,长江中下游梅雨强度偏强,入梅时间异常偏早。  相似文献   

2.
亚洲热带夏季风的首发地区和机理研究   总被引:28,自引:5,他引:28  
文中分析了多年逐候平均 85 0hPa风场和黑体辐射温度等物理量的时空演变 ,结果表明 ,90°E以东的孟加拉湾、中南半岛和南海是亚洲热带夏季风首先爆发的地区 ,爆发时间在 2 7~ 2 8候 ,具有突发性和同时性。 90°E以西的印度半岛和阿拉伯海是热带夏季风爆发较晚的地区 ,季风首先在该区 10°N以南爆发 ,时间约在 30~ 31候 ,然后向北推进 ,6月末在全区建立 ,爆发过程具有渐进性。机制分析表明 ,由于 110~ 12 0°E的中高纬东亚大陆在春季和初夏地面感热通量、温度和气压的迅速变化 ,使热带低压带首先在该处冲破高压带 ,生成大陆低压 ,并引导西南气流在 90°E以东地区首先建立。在 90°E以西的印度半岛地区 ,地面感热通量在 4~ 5月间几乎没有明显变化 ,因而印度季风比南海季风晚爆发约 1个月。由此得出 ,90°E是东亚夏季风和南亚夏季风的分界线。此外 ,还着重探讨了南亚高压的季节变化与亚洲热带夏季风爆发的时间联系。发现南亚高压中心位置与亚洲热带夏季风爆发时间有较好的对应关系。南亚高压中心跳过 2 0°N时 ,南海夏季风爆发 ,跳过 2 5°N时 ,印度夏季风在其南部爆发。将用上述方法确定的爆发时间与用其他方法确定的爆发时间相比较 ,发现它们在南海地区有较好的一致性 ,在印度地区略有差异。  相似文献   

3.
利用1979--2008年NCEP/NCAR逐日再分析资料和向外长波辐射资料讨论了4-5月南亚高压在中南半岛上空建立的年际变化特征及其与亚洲南部夏季风的关系。发现南亚高压建立偏早年其建立过程时间长,中南半岛高空反气旋环流强,建立开始前位于菲律宾群岛以东洋面上空的反气旋环流中心位置较为偏西;偏晚年南亚高压建立过程时间短,中南半岛高空反气旋环流弱,建立开始前西太平洋上空无闭合的反气旋性环流中心。南亚高压建立的早晚与中南半岛地区对流建立发展关系密切,当中南半岛地区对流建立发展较早时,南亚高压建立较早;反之,对流建立发展偏晚时,南亚高压建立偏晚。南亚高压建立早晚年,亚洲南部夏季风的爆发存在明显差异。南亚高压建立偏早年,孟加拉湾东部一中南半岛夏季风和南海夏季风爆发早;建立偏晚年,孟加拉湾东部一中南半岛夏季风和南海夏季风爆发晚,因此南亚高压在中南半岛上空建立的早晚对后期亚洲南部夏季风的爆发具有较好的指示意义。  相似文献   

4.
利用NCEP/NCAR再分析资料、向外长波辐射(outgoing long-wave radiation,OLR)资料以及卫星、地面站点降水资料,对2007年南海夏季风爆发前后的对流活动、环流形势及降水分布进行研究,结果表明:2007年对流活动增强首先出现在孟加拉湾东岸,然后扩展到南海地区;同时副高东撤北抬,南海夏季风于5月中下旬(29候)爆发;季风爆发后,南海地区开始盛行西南气流,亚洲中低纬地区南北温差(风向切变)由正(负)变负(正).2007年南海夏季风爆发期间,水汽输送和季风涌活动增强使我国东部地区降水增多.  相似文献   

5.
余荣  江志红  马红云 《大气科学》2016,40(3):504-514
本文利用NCAR开发的CAM5.1(Community Atmosphere Model Version 5.1)模式,针对我国东部大规模城市下垫面发展对南海夏季风爆发的影响进行了数值模拟研究。结果表明我国东部大规模城市群发展可能使得南海夏季风提前1候爆发;机理分析表明:在南海夏季风爆发之前,中国东部城市群发展引起的陆面增温,使得南海及其附近地区南北温差提前逆转、中国东部区域海平面气压降低,导致中南半岛到南海地区西南气流加强,中南半岛到南海地区降水增加,而凝结潜热垂直变化强迫出的异常环流,促进了南亚高压的加强及提前北跳,相伴随的高层抽吸作用有助于季风对流的建立和西太平洋副高的减弱东撤,从而形成了有利于南海夏季风爆发的高低层环流条件,导致南海夏季风提前爆发。另外,观测结果表明1993年之后南海夏季风爆发的日期相对上一个年代明显提前约2候,城市化快速发展阶段与南海夏季风爆发的年代际变化存在时间段的吻合,表明城市下垫面发展可能是南海夏季风提前爆发的原因之一。  相似文献   

6.
海陆分布和地形对1998年夏季风爆发的热力影响   总被引:8,自引:9,他引:8  
应用1980-1995年5天平均的CMAP降水资料、美国NMC850hPa风、卫星反演的向外长波辐射(OLR)和上部对流层水汽亮温(BT)等资料分析比较了南海夏季风爆发前后的基本特征。结果发现:BT能够反映南海夏季风的爆发及其与周围地区降水的关系,但局地降水信息的反映不够具体;OLR能够比较好的反映热带海洋上的降水,但陆地上的低值OLR可能受到地形的影响,仅仅850hPa风场不能完全确定夏季风的爆发。南海季风转换区域定义在南海的中北部比较合适,这是因为南海夏季风爆发前就存在着长年位于南海南部的带海洋对流性雨带;南海夏季风爆发后西南季风气流和季风雨带从印度洋经孟加拉湾和南海伸向西北太平洋,开始了南亚和东亚夏季风的爆发过程。  相似文献   

7.
中南半岛地区热力特征对南海季风爆发的可能影响及机理   总被引:10,自引:1,他引:10  
利用1998年5月1日-8月31日南海季风试验(SCSMX)产1980年1月-1995年12月NCEP/NCAR候平均再分析资料,分析1998年和多年平均情况下南海夏季风爆发期间中南半岛地区热力特征,揭示该地区热状况的异常与南海夏季风爆发之间的可能联系,从而讨论引起南海夏季风爆发的可能机制。结果发现,南海季风爆发前中南半岛附近地区存在较强的持续地面感知加热并具有显的低频振荡特征,低层大气在中南半岛地区出现较强的暖中心,由此导致局地强的水平温度梯度和位势高度梯度,有利于加强该地区的西南风。南海季风爆发前中南半岛地区低层出现较强的辐合风,高层出现较强的辐散风,这种低层强的辐合,高层强的辐射散配置有利于垂直运动的发展,降水的加强,进而触发南海季风的爆发。对多年平均资料的分析也证实了1998年南海季风爆发过程中所具有的特征,并进一步发现南海季风爆发前中南半岛地区850hPa温度是逐渐增加的,且增温幅度大于南海地区上空,由此加强了中南半岛与南海之间的温差。另外,比纬圈温度偏差和位势高度偏差的分析中发现,南海季风爆发期间南海和中南半岛地区的副高东撤与中南半岛地区的增温和孟加拉湾低槽的向东扩展有关。  相似文献   

8.
蒙伟光  郑彬 《气象学报》2006,64(1):81-89
在对南海夏季风的爆发及中南半岛陆面过程的可能影响进行了诊断分析的基础上,应用MM5/NOAHLSM模式,研究了中南半岛陆气相互作用对2004年南海夏季风爆发过程的可能影响。结果发现:在南海夏季风爆发前,中南半岛南海地区低层气温差确实出现低值,甚至负值;尽管短期内中南半岛土壤湿度和降水的变化没有引起季风爆发日期的改变,但对季风爆发的强度有影响。土壤湿度和降水变化引起的干异常可导致地表感热通量的增大和地表温度的升高,致使中南半岛与南海之间低层的温差异常(负温差)减小,季风爆发强度减弱;不同的是,湿异常可引起季风爆发强度增强。这一结果说明,在南海夏季风爆发前期,中南半岛上空对流活动和降水异常及其引起的土壤湿度的异常变化在一定程度上会影响到季风爆发的过程。文章还比较了不同温湿地表条件下低层大气状态的差异和地表能量、水分平衡过程的不同,分析了陆气相互作用对季风活动产生影响的物理机制。  相似文献   

9.
利用高分辨率卫星观测资料,从气候态角度分析了亚洲热带夏季风爆发特征。研究表明,亚洲热带夏季风最先在中南半岛西部爆发,随后在整个中南半岛和孟加拉湾东部,然后扩大至孟加拉湾西部和南海。夏季风爆发后,与孟加拉湾和南海相比,中南半岛雨量增强形势不明显。第26—28候(即5月第2候—5月第4候)是亚洲热带夏季风的爆发阶段。整个爆发过程,低层风场的时空演变与对流降水相对应,海表温度场增温较海表风场提早约1候左右;华南地区以锋面降水为主,即副热带季风降水。采用对流降水和海表上空10 m风场分别代表夏季风降水和盛行风向的时空演变特征较常规资料更为准确、精细。  相似文献   

10.
关于南海夏季风建立的大尺度特征及其机制的讨论   总被引:28,自引:3,他引:25  
使用1998年南海季风试验期间高质量资料和NCEP/NCAR40年再分析资料分析了南海季风建立前后的大尺度环流特征和要素的突变及爆发过程。发现南亚高压迅速地从菲律宾以东移到中南半岛北部,印缅槽加强,赤道印度洋西风加强并向东向北迅速扩展和传播,以及相伴随的中低纬相互作用和西太平洋副高连续东撤是南海夏季风建立的大尺度特征,与此同时,亚洲低纬地区的南北温差和纬向风切变也发生相应的突变。数值实验结果指出,印度半岛地形的陆面加热作用在其东侧激发的气旋性环流对于印缅槽的加强有重要作用,并进而有利于南海夏季风先于印度夏季风爆发。  相似文献   

11.
使用1998年南海季风试验期问高质量资料和NCEP/NCAR40年再分析资料分析了南海季风建立前后的大尺度环流特征和要素的突变及爆发过程。发现南亚高压迅速从菲律宾以东移到中南半岛北部,孟加拉湾槽加深加强,赤道印度洋西风加强并向东向北迅速扩展和传播,以及伴随的中低纬相互作用和西太平洋副高连续东撤是南海夏季风建立的大尺度特征。与此同时,亚洲低纬地区的南北温差和纬向风切变也发生相应的突变。数值试验结果表明,印度半岛地形的陆面加热作用在其东侧激发的气旋性环流对于孟加拉湾槽的加强有重要作用,并进而有利于南海夏季风先于印度夏季风爆发。  相似文献   

12.
Global gridded daily mean data from the NCEP/NCAR Reanalysis(1948-2012) are used to obtain the onset date,retreat date and duration time series of the South China Sea summer monsoon(SCSSM) for the past 65 years.The summer monsoon onset(retreat) date is defined as the time when the mean zonal wind at 850 hPa shifts steadily from easterly(westerly) to westerly(easterly) and the pseudo-equivalent potential temperature at the same level remains steady at greater than 335 K(less than 335 K) in the South China Sea area[110-120°E(10-20°N)].The clockwise vortex of the equatorial Indian Ocean region,together with the cross-equatorial flow and the subtropical high,plays a decisive role in the burst of the SCSSM.The onset date of the SCSSM is closely related to its intensity.With late(early) onset of the summer monsoon,its intensity is relatively strong(weak),and the zonal wind undergoes an early(late) abrupt change in the upper troposphere.Climate warming significantly affects the onset and retreat dates of the SCSSM and its intensity.With climate warming,the number of early-onset(-retreat) years of the SCSSM is clearly greater(less),and the SCSSM is clearly weakened.  相似文献   

13.
利用大尺度环流确定2006年南海夏季风爆发日期   总被引:4,自引:0,他引:4  
南海夏季风爆发最显著的特征就是南海地区西南风的突然增强和降水的明显增多,往往采用南海地区低层平均风场和(或)对流强度来判别南海夏季风的爆发日期。这种方法在大多数的年份是适用的,但是2006年由于0601号台风“珍珠”的介入,利用南海地区的区域指标来确定南海夏季风的爆发日期就略显不足。要解决以上的问题,必须从更大尺度上去想办法。利用经圈和纬圈环流可以较好地确定2006年南海夏季风的爆发日期。分析结果表明2006年南海夏季风爆发于5月16日(第4候)。  相似文献   

14.
South China Sea summer monsoon onset in relation to the off-equatorial ITCZ   总被引:3,自引:0,他引:3  
Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon rainfall might be the off-equatorial ITCZ besides the land-sea thermal contrast. The northward-propagating cumulus convection over the northern Indian Ocean could enhance the monsoon trough so that the effect of the horizontal advection of moisture and heat is substantially increased, thus westerlies can eventually penetrate and prevail over the South China Sea (SCS) region.  相似文献   

15.
利用2004年和1998年强弱南海夏季风年的逐日位势高度场资料,从能量传播的角度诊断分析了南海夏季风爆发期间的波包传播特征及其与季风爆发的联系.结果表明(1)孟加拉湾是南海季风爆发的关键区域.(2)南海季风爆发前,南海地区的波包值有明显的突变,可能体现了季风爆发的爆发性特征.(3)1998弱夏季风年波包值相对较小,传播较慢;2004强夏季风年波包值相对较大,传播迅速.(4)南海夏季风爆发前,对流层整层的波包值都随时间增加,爆发前一天低层和高层的波包值有相同的变化,夏季风爆发之后,低层波包值与高层的波包值有反相的变化.  相似文献   

16.
The unique role of the South China Sea summer monsoon (SCSSM) onset process in the development of the East Asian summer monsoon (EASM) is demonstrated in this study. The SCSSM onset process is examined in terms of the vertical linkage between the Western Pacific subtropical high (WPSH) and the South Asian high (SAH). A composite analysis is performed in order to adequately describe the vertical linkage in a synoptic timescale. The South China Sea (SCS) is a key region for the seasonal migrations of the WPSH and the SAH, with the former retreating northeastward, the latter advancing northwestward, and both taking place over the SCS during the SCSSM onset period. The SCSSM onset process is characterized by a significant change in the relative configuration of the ridge lines of the WPSH and the SAH. Just prior to the onset period, the ridge lines intersect vertically over the SCS, thus prohibiting convective activities. During the onset period, the ridge line intersection moves away from the SCS due to the retreating WPSH and the northward shift of the SAH ridge line. This coincides with the emergence of monsoonal convective activities over the SCS and the establishment of a moisture channel from the tropics, which in turn provides favorable conditions for the development of deep convective activity. The northeastward intrusion of the lower level southwesterlies and the moisture supplying channel are closely related to the development of a preexisting twin cyclone in the Bay of Bengal. The northeastward lower level southwesterlies form a monsoonal ascending motion in the SCS, which further merges upward into the northeasterlies to the south of the SAH ridge line. This is a signature of the establishment of the local Hadley circulation, which marks the beginning of the EASM. The frontal system is the most frequent attendant synoptic event during the SCSSM onset. From the viewpoint of synoptic process, the SCSSM undergoes a two-stage onset process which is characterized by the southward intrusion of the frontal system in the earlier stage and the outbreak of the tropical convection in the later stage. The frontal system may act as a trigger for the outbreak of the tropical convection in the later stage. The burst out of the monsoonal convection over the SCS is essential for the breakdown of the vertical intersection between the WPSH and the SAH therein.  相似文献   

17.
Based on the method of composite analysis, the onset process and preceding signs of summer monsoon over the South China Sea (SCS) is investigated. The result indicates that convection activities appear first over the Indo-China Peninsula prior to the onset of the monsoon, then around the Philippines just at the point of onset, implying that the convection activities around the Philippines serve as one of the reasons leading to the SCS monsoon onset. Before the SCS monsoon onset, the equatorial westerly over the Indian Ocean (75°E 95°E ) experiences noticeable enhancement and plays an important role on the SCS monsoon onset. It propagates eastward rapidly and causes the establishment and strengthening of equatorial westerly in the southern SCS, on the one hand, it results in the migration southward of the westerly on south side of the south-China stationary front by means of shift northeastward of the westerly and convection over the Bay of Bengal, on the other. Further study also shows that the intensification of equatorial westerly in the Indian Ocean (75°E 95°E) and the southern SCS is closely related to the reinforcement of the Southern-Hemisphere Mascarene high and Australian high, and cross-equatorial flow northward around Somali, at 85°E and 105°E, respectively.  相似文献   

18.
南海夏季风爆发与大气对流低频振荡的年际变化   总被引:8,自引:0,他引:8  
根据1980~1991年云顶黑体温度(TBB)相位和强度的变化确定了南海夏季风爆发的时间,分析研究了夏季风爆发期间TBB场和850hPa风场的变化过程及其与海温的关系。结果表明:南海夏季风爆发平均时间是5月第4候,它爆发的时间和强度有显著的年际变化,并与大气的低频振荡及前期海洋的热力状况有密切关系。南海夏季风爆发早年(4月第6候),副热带高压较弱,撤离南海较快,从赤道东印度洋到赤道西太平洋,大气对流活动较强,夏季风爆发南海早于孟加拉湾,季风爆发时90~100°E区域过赤道气流显著加强。夏季风爆发晚年(6月第1候)情况相反。南海夏季风爆发早晚与大气30~60天振荡到达南海的位相有关,前冬和早春南海海温的高低和4月中旬至5月中南半岛强对流区的出现时间,是南海夏季风爆发年际变化的前期征兆。根据前冬南海海温预测1998年南海夏季风爆发的时间和强度与实际相符。  相似文献   

19.
Since the South China Sea (SCS) summer monsoon (SCSSM) is pronouncedly featured by abruptly intensified southwesterly and obviously increased precipitation over the SCS,the lower-tropospheric winds and/or convection intensities are widely used to determine the SCSSM onset.The methods can be used successfully in most of the years but not in 2006.Due to the intrusion of Typhoon Chanchu(0601)that year,the usual method of determining SCSSM onset date by utilizing the SCS regional indices is less capable of pinpointing the real onset date.In order to solve the problem,larger-scale situations have to be taken into account.Zonal and meridional circulations would be better to determine the break-out date of SCSSM in 2006.The result indicates that its onset date is May 16.Moreover,similar onset dates for other years can be obtained using various methods,implying that large-scale zonal and meridional circulations can be used as an alternative method for determining the SCSSM onset date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号