首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The northern Norwegian-Greenland Sea opened up as the Knipovich Ridge propagated from the south into the ancient continental Spitsbergen Shear Zone. Heat flow data suggest that magma was first intruded at a latitude of 75° N around 60 m.y.b.p. By 40–50 m.y.b.p. oceanic crust was forming at a latitude of 78° N. At 12 m.y.b.p. the Hovgård Transform Fault was deactivated during a northwards propagation of the Knipovich Ridge. Spreading is now in its nascent stages along the Molloy Ridge within the trough of the Spitsbergen Fracture Zone. Spreading rates are slower in the north than the south. For the Knipovich Ridge at 78° N they range from 1.5–2.3 mm yr-1 on the eastern flank to 1.9–3.1 mm yr-1 on the western flank. At a latitude of 75° N spreading rates increase to 4.3–4.9 mm yr-1.Thermal profiles reveal regions of off-axial high heat flow. They are located at ages of 14 m.y. west and 13 m.y. east of the northern Knipovich Ridge, and at 36 m.y. on the eastern flank of the southern Knipovich Ridge. These may correspond to episodes of increased magmatic activity; which may be related to times of rapid north-wards rise axis propagation.The fact that the Norwegian-Greenland Sea is almost void of magnetic anomalies may be caused by the chaotic extrusion of basalts from a spreading center trapped within the confines of an ancient continental shear zone. The oblique impact of the propagating rift with the ancient shear zone may have created an unstable state of stress in the region. If so, extension took place preferentially to the northwest, while compression occurred to the southeast between the opening, leaking shear zone and the Svalbard margin. This caused faster spreading rates to the northwest than to the southeast.  相似文献   

2.
In 1989–1990 the SeaMARC II side-looking sonar and swath bathymetric system imaged more than 80 000 km2 of the seafloor in the Norwegian-Greenland Sea and southern Arctic Ocean. One of our main goals was to investigate the morphotectonic evolution of the ultra-slow spreading Knipovich Ridge from its oblique (115° ) intersection with the Mohns Ridge in the south to its boundary with the Molloy Transform Fault in the north, and to determine whether or not the ancient Spitsbergen Shear Zone continued to play any involvement in the rise axis evolution and segmentation. Structural evidence for ongoing northward rift propagation of the Mohns Ridge into the ancient Spitsbergen Shear Zone (forming the Knipovich Ridge in the process) includes ancient deactivated and migrated transforms, subtle V-shaped-oriented flank faults which have their apex at the present day Molloy Transform, and rift related faults that extend north of the present Molloy Transform Fault. The Knipovich Ridge is segmented into distinct elongate basins; the bathymetric inverse of the very-slow spreading Reykjanes Ridge to the south. Three major fault directions are detected: the N-S oriented rift walls, the highly oblique en-echelon faults, which reside in the rift valley, and the structures, defining the orientation of many of the axial highs, which are oblique to both the rift walls and the faults in the axial rift valley. The segmentation of this slow spreading center is dominated by quasi stationary, focused magma centers creating (axial highs) located between long oblique rift basins. Present day segment discontinuities on the Knipovich Ridge are aligned along highly oblique, probably strike-slip faults, which could have been created in response to rotating shear couples within zones of transtension across the multiple faults of the Spitsbergen Shear Zone. Fault interaction between major strike slip shears may have lead to the formation of en-echelon pull apart basins. The curved stress trajectories create arcuate faults and subsiding elongate basins while focusing most of the volcanism through the boundary faults. As a result, the Knipovich Ridge is characterized by Underlapping magma centers, with long oblique rifts. This style of basin-dominated segmentation probably evolved in a simple shear detachment fault environment which led to the extreme morphotectonic and geophysical asymmetries across the rise axis. The influence of the Spitsbergen Shear Zone on the evolution of the Knipovich Ridge is the primary reason that the segment discontinuities are predominantly volcanic. Fault orientation data suggest that different extension directions along the Knipovich Ridge and Mohns Ridge (280° vs. 330°, respectively) cause the crust on the western side of the intersection of these two ridges to buckle and uplift via compression as is evidenced by the uplifted western wall province and the large 60 mGal free air gravity anomalies in this area. In addition, the structural data suggest that the northwards propagation of the spreading center is ongoing and that a `normal' pure shear spreading regime has not evolved along this ridge. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
The sea floor of Fram Strait, the over 2500 m deep passage between the Arctic Ocean and the Norwegian-Greenland Sea, is part of a complex transform zone between the Knipovich mid-oceanic ridge of the Norwegian-Greenland Sea and the Nansen-Gakkel Ridge of the Arctic Ocean. Because linear magnetic anomalies formed by sea-floor spreading have not been found, the precise location of the boundary between the Eurasian and the North American plate is unknown in this region. Systematic surveying of Fram Strait with SEABEAM and high resolution seismic profiling began in 1984 and continued in 1985 and 1987, providing detailed morphology of the Fram Strait sea floor and permitting better definition of its morphotectonics. The 1984 survey presented in this paper provided a complete set of bathymetric data from the southernmost section of the Svalbard Transform, including the Molloy Fracture Zone, connecting the Knipovich Ridge to the Molloy Ridge; and the Molloy Deep, a nodal basin formed at the intersection of the Molloy Transform Fault and the Molloy Ridge. This nodal basin has a revised maximum depth of 5607 m water depth at 79°8.5N and 2°47E.  相似文献   

4.
The northeastern high-latitude North Atlantic is characterised by the Bellsund and Isfjorden fans on the continental slope off west Svalbard, the asymmetrical ultraslow Knipovich spreading ridge and a 1,000 m deep rift valley. Recently collected multichannel seismic profiles and bathymetric records now provide a more complete picture of sedimentary processes and depositional environments within this region. Both downslope and alongslope sedimentary processes are identified in the study area. Turbidity currents and deposition of glacigenic debris flows are the dominating downslope processes, whereas mass failures, which are a common process on glaciated margins, appear to have been less significant. The slide debrite observed on the Bellsund Fan is most likely related to a 2.5–1.7 Ma old failure on the northwestern Barents Sea margin. The seismic records further reveal that alongslope current processes played a major role in shaping the sediment packages in the study area. Within the Knipovich rift valley and at the western rift flank accumulations as thick as 950–1,000 m are deposited. We note that oceanic basement is locally exposed within the rift valley, and that seismostratigraphic relationships indicate that fault activity along the eastern rift flank lasted until at least as recently as 1.5 Ma. A purely hemipelagic origin of the sediments in the rift valley and on the western rift flank is unlikely. We suggest that these sediments, partly, have been sourced from the western Svalbard—northwestern Barents Sea margin and into the Knipovich Ridge rift valley before continuous spreading and tectonic activity caused the sediments to be transported out of the valley and westward.  相似文献   

5.
In the past decade, the geophysical database in the northern North Atlantic and central Arctic Ocean constantly grew. Though far from being complete, the information from new aeromagnetic and seismic data north of the Jan Mayen Fracture Zone and in the Arctic Ocean, in combination with existing compiled geological and geophysical data, is used to produce paleo-bathymetric maps for several Cenozoic time intervals. This paleo-bathymetric model provides evidence for an initial deep-water exchange through the Fram Strait starting around 17 Ma. Furthermore, the model suggests that crustal rifting prior to initial seafloor spreading might have facilitated an earlier deep-water connection. This confirms that the paleo-topography of the Yermak Plateau played an important role in allowing at least the exchange of shallow water between the northern North Atlantic and the Arctic Ocean before the opening of the deep-water Fram Strait gateway. In the south of the research area the paleo-bathymetric model indicates that the first possibility for a deep-water overflow from the Norwegian-Greenland Sea to the North Atlantic could have been between 15 and 20 Ma.  相似文献   

6.
Prior to extension of the lithosphere in the Eurasia Basin, the Yermak Plateau was an element of the Eurasian Arctic margin. Extension of the Barents Sea shelf culminated gradually in rifting of the continental crust with separation of this block from the continent during Chrons C25r?C26n (57.656?59.237 Ma ago) and emplacement of numerous basic dikes, which could be responsible for the formation of high-amplitude magnetic anomalies on the Yermak Plateau. The investigation included reconstruction of axes in the breakup zones along peripheral continental fragments of Spitsbergen with determination of the Euler poles and angles of rotation, which describe the kinematics of this process. It is revealed that the difference between depths of conjugate isobaths can be as large as many tens of meters, which reflects the nonuniformly scaled slide of peripheral areas of the continental crust along the plane of the crustal-penetrating fault and, correspondingly, their different subsidence during rifting.  相似文献   

7.
2D multichannel seismic data and bathymetric records from the glaciated western Svalbard margin and the rift valley region of the ultraslow, and oblique-spreading, Knipovich Ridge are in this study interpreted to infer differences in seafloor spreading mechanisms and to identify sedimentary processes. Our results show that the rift flank geometry, the rift valley elevation and the active magmatism are closely linked. The inferred magmatic segments of the Knipovich Ridge exhibit high and steep rift flanks, whereas the rift flank heights of the proposed tectonic-dominated segments are lower and less steep. In addition, we observe significant rift flank asymmetry across the rift valley which can be partly explained by subsidence due to sediment loading. The identification of a huge sedimentary wedge on the western rift flank suggests that the oldest parts of these sediments have been transported from the western Svalbard margin and across the rift valley. However, we suggest that most of these sediments are glacimarine/hemipelagic sediments which have been deposited in the time period after the rift valley flanks had developed sufficiently to cut off the direct transport routes from the western Svalbard margin. We also observe thick current depositions on the western side, suggesting a strong along-slope influence of the West Spitsbergen Current during the Plio–Pleistocene time period.  相似文献   

8.
The northwestern continental margin of New Zealand offers one of the finest examples of a continent-backarc transform. This transform, part of the Vening Meinesz Fracture Zone (VMFZ), accommodated about 170 km of sea-floor spreading in the Norfolk backare basin together with eastward migration of a volcanic arc, the Three Kings Ridge, in the Mid- to Late Miocene. Before the onset of spreading, strain along the VMFZ may have been linked to a major Early Miocene obduction event — the emplacement of the Northland Allochthon. The transform is manifested by a belt up to 50 km wide of left-stepping, linear fault scarps up to 2000 m high within an approximately 100 km-wide deformed zone. A marginal ridge, the Reinga Ridge, which includes a faulted, folded and uplifted Miocene sedimentary basin, occurs within the high-standing continental side of the deformed zone, whereas a narrow strip of linear detached blocks occupies the deep backarc oceanic side. Prespreading uplift and erosion of crust in the proto-backarc region, are volcanism, and obduction of the allochthon, supplied clastic sediments to the basin on the continental side. This basin was complexly deformed as the transform evolved. The transform was initiated as a dextral strike-slip fault zone, which developed right-branching splays and left-steps along its length, uplifting and cutting the continental margin into left-hand, en echelon blocks and relays. Folds formed locally within relay blocks and at the distal ends of the splays. Only the high continental side of this zone (the Reinga Ridge) remains, the formerly adjacent crust (the Three Kings Ridge) having been displaced towards the southeast. As the Three Kings block moved and the Norfolk Basin opened, opposing rift margins of the backarc basin foundered to form terraces. The oceanic side of the transform also subsided to produce the belt of detached blocks (some laterally displaced by strike slip) and linear troughs along the main escarpment system.  相似文献   

9.
The rift zone??s relief, the spreading kinematics, and the experimental modeling of the Knipovich Ridge??s formation were analyzed. Its rift zone is formed in a transtension environment. Faulting is predominant in its northern part, while strike-slip is characteristic for the south. A system of short extension basins connected by deep strike-slip U-shaped troughs is observed in the south. A system of volcanic rises connected by short shallow basins is observed in the north. The rift valley is V-shaped. According to the experimental modeling data, these extension kinematics provide the formation of short extension basins connected by strike-slips and transtension faults. Their length and orientation depend on the spreading obliquity of each segment.  相似文献   

10.
The southwestern part of the Scotia Sea, at the corner of the Shackleton Fracture Zone with the South Scotia Ridge has been investigated, combining marine magnetic profiles, multichannel seismic reflection data, and satellite-derived gravity anomaly data. From the integrated analysis of data, we identified the presence of the oldest part of the crust in this sector, which tentative age is older than anomaly C10 (28.7 Ma). The area is surrounded by structural features clearly imaged by seismic data, which correspond to gravity lows in the satellite-derived map, and presents a rhomboid-shaped geometry. Along its southern boundary, structural features related to convergence and possible incipient subduction beneath the continental South Scotia Ridge have been evidenced from the seismic profile. We interpret this area, now located at the edge of the south-western Scotia Sea, as a relict of ocean-like crust formed during an earlier, possibly diffuse and disorganized episode of spreading at the first onset of the Drake Passage opening. The successive episode of organized seafloor spreading responsible for the opening of the Drake Passage that definitively separated southern South America from the Antarctic Peninsula, instigated ridge-push forces that can account for the subduction-related structures found along the western part of the South Scotia Ridge. This seafloor accretion phase occurred from 27 to about 10 Ma, when spreading stopped in the western Scotia Sea Ridge, as resulted from the identification of the marine magnetic anomalies.  相似文献   

11.
The structural framework of the southern part of the Shackleton Fracture Zone has been investigated through the analysis of a 130-km-long multichannel seismic reflection profile acquired orthogonally to the fracture zone near 60° S. The Shackleton Fracture Zone is a 800-km-long, mostly rectilinear and pronounced bathymetric lineation joining the westernmost South Scotia Ridge to southern South America south of Cape Horn, separating the western Scotia Sea plate from the Antarctic plate. Conventional processing applied to the seismic data outlines the main structures of the Shackleton Fracture Zone, but only the use of enhanced techniques, such as accurate velocity analyses and pre-stack depth migration, provides a good definition of the acoustic basement and the architecture of the sedimentary sequences. In particular, a strong and mostly continuous reflector found at about 8.0 s two-way traveltime is very clear across the entire section and is interpreted as the Moho discontinuity. Data show a complex system of troughs developed along the eastern flank of the crustal ridge, containing tilted and rotated blocks, and the presence of a prominent listric normal fault developed within the oceanic crust. Positive flower structures developed within the oceanic basement indicate strike-slip tectonism and partial reactivation of pre-existing faults. Present-day tectonic activity is found mostly in correspondence to the relief, whereas fault-induced deformation is negligible across the entire trough system. This indicates that the E–W-directed stress regime present in the Drake Passage region is mainly dissipated along a narrow zone within the Shackleton Ridge axis. A reappraisal of all available magnetic anomaly identifications in the western Scotia Sea and in the former Phoenix plate, in conjunction with new magnetic profiles acquired to the east of the Shackleton Fracture Zone off the Tierra del Fuego continental margin, has allowed us to propose a simple reconstruction of Shackleton Fracture Zone development in the general context of the Drake Passage opening.  相似文献   

12.
The right-lateral Blanco Transform Fault Zone (BTFZ) offsets the Gorda and the Juan de Fuca Ridges along a 350 km long complex zone of ridges and right-stepping depressions. The overall geometry of the BTFZ is similar to several other oceanic transform fault zones located along the East Pacific Rise (e.g., Siquieros) and to divergent wrench faults on continents; i.e., long strike-slip master faults offset by extensional basins. These depressions have formed over the past 5 Ma as the result of continual reorientation of the BTFZ in response to changes in plate motion. The central depression (Cascadia Depression) is flanked by symmetrically distributed, inward-facing back-tilted fault blocks. It is probably a short seafloor spreading center that has been operating since about 5 Ma, when a southward propagating rift failed to kill the last remnant of a ridge segment. The Gorda Depression on the eastern end of the BTFZ may have initially formed as the result of a similar occurrence involving a northward propagating rift on the Gorda ridge system. Several of the smaller basins (East Blanco, Surveyor and Gorda) morphologically appear to be oceanic analogues of continental pull-apart basins. This would imply diffuse extension rather than the discrete neovolcanic zone associated with a typical seafloor spreading center. The basins along the western half of the BTFZ have probably formed within the last few hundred thousands years, possibly as the result of a minor change in the Juan de Fuca/Pacific relative motion.  相似文献   

13.
李凯  宋立军  东玉  李爱荣 《海洋学报》2019,41(3):96-105
塔斯曼海位于西南太平洋地区,处于印度-澳大利亚板块和西兰板块之间,大地构造背景复杂。该地区是全球油气资源勘探的重点海域之一,但是国内对该地区的研究相当匮乏。本文根据塔斯曼海海域的自由空气重力异常对塔斯曼海海域的构造单元进行了划分,前人关于塔斯曼海的研究主要集中在Resolution海岭北部,我们认为塔斯曼海的范围应包括Resolution海岭以南,麦夸里海岭以西,塔斯曼断裂带以东的区域(即南部次盆)。结果显示,塔斯曼海域及邻区包括3个一级构造单元:东澳大利亚陆缘、西兰板块和塔斯曼海盆,且塔斯曼海盆可进一步划分为西部次盆、东部次盆和南部次盆。本文基于塔斯曼海域90 Ma以来的洋壳年龄数据编制了构造演化图,将塔斯曼海的形成演化过程分为4个阶段:(1)中生代陆内裂谷期(90~83 Ma BP);(2)塔斯曼海扩张阶段(83~61 Ma BP);(3)塔斯曼海北部扩张停止阶段(61~52 Ma BP);(4)塔斯曼海南部改造阶段(52 Ma BP至今)。  相似文献   

14.
The Agulhas Ridge is a prominent topographic feature that parallels the Agulhas-Falkland Fracture Zone (AFFZ). Seismic reflection and wide angle/refraction data have led to the classification of this feature as a transverse ridge. Changes in spreading rate and direction associated with ridge jumps, combined with asymmetric spreading within the Agulhas Basin, modified the stress field across the fracture zone. Moreover, passing the Agulhas Ridge’s location between 80 and 69 Ma, the Bouvet and Shona Hotspots may have supplied excess material to this part of the AFFZ thus altering the ridge’s structure. The low crustal velocities and overthickened crust of the northern Agulhas Ridge segment indicate a possible continental affinity that suggests it may be formed by a small continental sliver, which was severed off the Maurice Ewing Bank during the opening of the South Atlantic. In early Oligocene times the Agulhas Ridge was tectono-magmatically reactivated, as documented by the presence of basement highs disturbing and disrupting the sedimentary column in the Cape Basin. We consider the Discovery Hotspot, which distributes plume material southwards across the AAFZ, as a source for the magmatic material.  相似文献   

15.
The Northland Plateau and the Vening Meinesz “Fracture” Zone (VMFZ), separating southwest Pacific backarc basins from New Zealand Mesozoic crust, are investigated with new data. The 12–16 km thick Plateau comprises a volcanic outer plateau and an inner plateau sedimentary basin. The outer plateau has a positive magnetic anomaly like that of the Three Kings Ridge. A rift margin was found between the Three Kings Ridge and the South Fiji Basin. Beneath the inner plateau basin, is a thin body interpreted as allochthon and parautochthon, which probably includes basalt. The basin appears to have been created by Early Miocene mainly transtensive faulting, which closely followed obduction of the allochthon and was coeval with arc volcanism. VMFZ faulting was eventually concentrated along the edge of the continental shelf and upper slope. Consequently arc volcanoes in a chain dividing the inner and outer plateau are undeformed whereas volcanoes, in various stages of burial, within the basin and along the base of the upper slope are generally faulted. Deformed and flat-lying Lower Miocene volcanogenic sedimentary rocks are intimately associated with the volcanoes and the top of the allochthon; Middle Miocene to Recent units are, respectively, mildly deformed to flat-lying, calcareous and turbiditic. Many parts of the inner plateau basin were at or above sea level in the Early Miocene, apparently as isolated highs that later subsided differentially to 500–2,000 m below sea level. A mild, Middle Miocene compressive phase might correlate with events of the Reinga and Wanganella ridges to the west. Our results agree with both arc collision and arc unzipping regional kinematic models. We present a continental margin model that begins at the end of the obduction phase. Eastward rifting of the Norfolk Basin, orthogonal to the strike of the Norfolk and Three Kings ridges, caused the Northland Plateau to tear obliquely from the Reinga Ridge portion of the margin, initiating the inner plateau basin and the Cavalli core complex. Subsequent N115° extension and spreading parallel with the Cook Fracture Zone completed the southeastward translation of the Three Kings Ridge and Northland Plateau and further opened the inner plateau basin, leaving a complex dextral transform volcanic margin.  相似文献   

16.
Large-scale detachment faults on mid-ocean ridges (MORs) provide a window into the deeper earth. They have megamullion on their corrugated surfaces, with exposed lower crustal and upper mantle rocks, rela- tively high residual Bouguer gravity anomaly and P-wave velocity, and are commonly associated with ocean- ic core complex. According to 30 detachment faults identified on MORs, we found that their distances to the axis mostly range from 5 to 50 km, half-spreading rates range from 6.8 to 17 mm/a, and activity time ranges from recent to 3 Ma. Most of the detachment faults are developed on the slow spreading Mid-Atlantic Ridge (MAR) and ultra-slow spreading Southwest Indian Ridge (SWIRl, with the dominant half-spreading rates of 7-13 mm/a, especially 10-13 mm/a. Furthermore, they mostly occur at the inside corner of one segment end and result in an asymmetric seafloor spreading. The detachment faults on MORs are mainly controlled by the tectonism and influenced by the magmatism. Long-lived detachment faults tend to be formed where the ridge magma supply is at a moderate level, although the tectonism is a first-order controlling factor. At the slow spreading ridges, detachment faults tend to occur where local magma supply is relatively low, whilst at the ultra-slow spreading ridges, they normally occur where local magma supply is relatively high. These faults are accompanied by hydrothermal activities, with their relationships being useful in the study of hydrothermal polymetallic sulfides and their origin.  相似文献   

17.
Gorda Ridge is the southern segment of the Juan de Fuca Ridge complex, in the north-east Pacific. Along-strike spreading-rate variation on Gorda Ridge and deformation of Gorda Plate are evidence for compression between the Pacific and Gorda Plates. GLORIA sidescan sonographs allow the spreading fabric associated with Gorda Ridge to be mapped in detail. Between 5 and 2 Ma, a pair of propagating rifts re-orientated the northern segment of Gorda Ridge by about 10° clockwise, accommodating a clockwise shift in Pacific-Juan de Fuca plate motion that occurred around 5 Ma. Deformation of Gorda Plate, associated with southward decreasing spreading rates along southern Gorda Ridge, is accommodated by a combination of clockwise rotation of Gorda Plate crust, coupled with left-lateral motion on the original normal faults of the ocean crust. Segments of Gorda Plate which have rotated by different amounts are separated by narrow deformation zones across which sharp changes in ocean fabric trend are seen. Although minor lateral movement may occur on these NW to WNW structures, no major right-lateral movement, as predicted by previous models, is observed.  相似文献   

18.
Sea floor spreading anomalies in the Lofoten-Greenland basins reveal an unstable plate boundary characterized by several small-offset transforms for a period of 4 m.y. after opening. North of the Jan Mayen Fracture Zone, integrated analysis of magnetic and seismic data also document a distinct, persistent magnetic anomaly associated with the continent-ocean boundary and a locally, robust anomaly along the inner boundary of the break-up lavas. These results provide improved constraints on early opening plate reconstructions, which include a new anomaly 23-to-opening pole of rotation yielding more northerly relative motion vectors than previously recognized; and a solution of the enigmatic, azimuthal difference between the conjugate Eocene parts of the Greenland-Senja Fracture Zone if the Greenland Ridge is considered a continental sliver. The results confirm high, 2.36–2.40 cm yr–1, early opening spreading rates, and are consistent with the start of sea floor spreading during Chron 24r. The potential field data along the landward prolongations of the Bivrost Fracture Zone suggest that its location is determined by a Mesozoic transfer system which has acted as a first-order, across-margin tectono-magmatic boundary between the regional Jan Mayen and Greenland-Senja Fracture Zone systems, greatly influencing the pre-, syn- and post-breakup margin development.  相似文献   

19.
The Ghana margin displays one of the best-known transform margins. Studies of the margin have provided the framework for a number of conceptual models aimed at understanding transform margin development worldwide. However, the deep structure of the margin is poorly known as knowledge is based only on wide-angle refraction measurements obtained from two separate localities on the margin. Consequently, complexities in the rift–shear margin architecture have been overlooked by current interpretations of margin development. Based on combined analysis of a detailed grid of ∼2710 km multichannel (MCS) lines and potential field data, we provide new insights into the structural architecture and tectonic development of the Ghana margin. In particular, we outline the deep structure of the entire margin using a series of 2D gravity modelled transects constrained by MCS and published wide-angle data. Our study reveals more complex rift–shear margin architecture than previously envisaged. We demonstrate that the main transform boundary representing the continental extension of the Romanche Fracture Zone, is actually composed of two distinct margin segments, i.e., the ENE–WSW trending sheared margin segment of the Cote d’Ivoire-Ghana Ridge and the NE–SW trending rift-influenced sheared margin segment of the Ghana Platform. These segments evolved under varying stress regimes, and during different time intervals. West of the transform margin, divergent rifting during the Early Cretaceous initiated the development of the Deep Ivorian Basin, essentially, as a single major pull-apart structure. However, east of the shear zone, oblique rifting resulted in the development of the Eastern Ghana Slope Basin as a composite of at least two coalescing pull-apart basins displaced along strike-slip faults. Our structural interpretation of the transform boundary geometry shows that the ridge and platform margin segments were each subjected to separate thermal influences from two different migrating spreading centres. Tectonic uplift of the ridge began through transpression during mid-Albian time following a change in relative direction of plate motion from NE–SW to ENE–WSW. However, the ridge uplift was amplified by thermal heating from a previously undocumented spreading centre whose progressive westward migration along the ridge followed closely after the Albian transpressional phase. The structural architecture of the Ghana margin resulted from a combination of factors, notably, pre-existing basement structure, plate boundary geometry, the relative direction of plate motion and thermal heating.  相似文献   

20.
The area reviewed covers the Mid-Norway continental margin between latitudes 62°N and 68°N. Main structural elements, as defined at the base Cretaceous level, are the Tröndelag Platform, underlying the inner shelf, the Möre and Vöring Basins, located beneath the outer shelf and slope, and the Möre Platform and the Outer Vöring Plateau, forming a base of slope trend of highs. Sediments contained in the Mid-Norway Basin range in age from Late Palaeozoic to Cenozoic. The basement was consolidated during the Caledonian orogenic cycle. Devonian and Early Carboniferous wrench movements along the axis of the Arctic-North Atlantic Caledonides are thought to have preceded the Namurian onset of crustal extension. Rifting processes were intermittently active for some 270 My until crustal separation between Greenland and Fennoscandia was achieved during the Early Eocene. During the evolution of the Norwegian-Greenland Sea rift system a stepwise concentration of tectonic activities to its axial zone (the area of subsequent continental separation) is observed. During the Late Palaeozoic to Mid-Jurassic a broad zone was affected by tensional faulting. During the Late Jurassic and Cretaceous the Tröndelag Platform was little affected by faulting whilst major rift systems in the Möre and Vöring Basins subsided rapidly and their shoulders became concomitantly upwarped. During the latest Cretaceous and Early Palaeogene terminal rifting phase only the western Möre and Vöring Basins were affected by intrusive and extrusive igneous activity. Following the Early Eocene crustal separation and the onset of sea floor spreading in the Norwegian-Greenland Sea, the Vöring segment of the Mid-Norway marginal basin subsided less rapidly than the Möre segment. During the Early and Mid Tertiary, minor compressional deformations affected the Vöring Basin and to a lesser degree the Möre Basin. Tensional forces dominated the Late Palaeozoic to Early Cenozoic evolution of the Mid-Norway Basin and effected strain mainly in the area where the crust was weakened by the previous lateral displacements. The lithosphere thinned progressively and the effects of the passively upwelling hot asthenospheric material became more pronounced. Massive dyke invasion of the thinned crust preceded its rupture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号