首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
提出了一种在声速剖面未知的条件下计算海底控制点水平坐标的方法,根据流体静力学方程将海底应答器的压力值转化为深度值,并以此深度值作为等效声速剖面法的参考深度,基于等效声速剖面法与船底换能器到海底应答器声波的传播时间计算各历元的测距值,通过圆走航利用距离交会法确定海底控制点水平方向的坐标。松花湖的实验表明,这种方法可以获得较高精度的浅海海底控制点水平方向的坐标。  相似文献   

2.
In this paper, a new paradigm for "through-the-sensor" remote sensing of the seafloor is presented. The methodology has been tailored for use with the AN/SQS-53C sonar found on many U.S. Navy destroyers. Sonar beamformer outputs are processed, and a point georeferenced database of signal attributes is constructed. Corresponding sonar settings and ship navigation information are also included for each database point. Database entries are then fused with environmental characteristics, such as bathymetry and sound speed information. These data may be derived from historical databases, on-site measurements, or a combination of the two. The database is then completed by ambiguity resolution and matching of modeled eigenray paths with database entries in order to associate signal attributes with specific propagation paths. Model inputs are derived from a customized version of the Comprehensive Acoustic System Simulation/Gaussian Ray Bundle eigenray propagation model (CASS/GRAB), which performs propagation estimates over incremental range/depth steps. Illustrations of how the point database may be filtered/constrained, gridded, and displayed are presented. An example of how bottom scattering strength can be derived from the database is presented, followed by an example of a technique for monostatic bottom loss estimation. Results indicate that the approach presented in this paper represents a viable method for conducting "through-the-sensor" measurements of seafloor scattering properties.  相似文献   

3.
海洋蒸发波导是微波通信的优良天然信道,但微波信号在波导中传播时容易受气海环境因素变化的影响。本文采用扩展傅里叶幅度敏感性分析法(Extended Fourier Amplitude Sensitivity Test,EFAST),分析了蒸发波导环境中微波传播路径损失对空气温度、海表温度、近海面风和相对湿度等气海环境因素变化的敏感性特点。敏感性分析结果呈现一种频率相关的频散特性,而信号极化方式影响较小。这4种环境因素中,相对湿度对路径损失的整体影响最大;在传播距离较近且高度较高的范围内近海面风速对传播的影响占据主导;空气温度和海表温度的敏感性大致相当;风速的影响是4种环境因素中最为复杂的,这也是在实际分析中需要额外重视的。本文对蒸发波导环境参数的敏感性分析结果对现场波导观测试验具有重要的参考意义,对敏感度高的环境参数可以考虑优先进行高时空分辨率观测。此外,在运用中尺度数值天气预报模式进行蒸发波导预报时,优先发展与敏感度高的气海参数有关的物理过程参数化方案,可以节约计算时间和资源。  相似文献   

4.
深海脉冲传播多途效应显著,直达波受海洋环境影响较大。基于南海某海域深水试验数据,采用Butterworth带通滤波器识别目标信号,进而分析近、中、远距离处VLA接收到的信号特征,并根据射线理论解释多途效应、直达波特征规律。结果表明:近距离目标信号可分为直达波及两次海底反射波;中距离可分为直达波与三次海底反射波;远距离目标信号弱,反射波特征不明显。其中,直达波声强显著低于第一次海底反射波,受夏季海面波导的影响,近表层深度处的直达波强度最大;50~200m深度层在强跃层控制下,声线向下弯曲,直达波信号随深度增加逐渐减弱;随传播距离增加,直达波逐渐减弱消失。  相似文献   

5.
This paper presents the basis of acoustic method used for temperature field measurement of seafloor hydrothermal vent and two techniques of the parabolic interpolation and the bending compensation of propagation paths of acoustic signal are introduced. Experimental research is performed to exactly rebuild the temperature field around hot springs on the floor of Qiezishan Lake, Yunnan, China. The accuracy of the travel time estimation has been improved based on the aforementioned technique and method. At the same time, by comparison of the results of temperature field with different means, the max absolute error, the maximum relative error and the root mean square error are given. It shows that the technique and the method presented in the paper can be applied to the temperature field measurement detector around the seafloor hydrothermal vent. It also has a good accuracy.  相似文献   

6.
海底底质特性描述及分类是当今浅海声学的研究热点,海底沉积物的物理结构特性与其声学响应特征密切相关。在分析海底沉积物声传播特性的基础上,应用现代计算机信号分析技术手段,对海底沉积物声学响应波形提取了4个特征参数:声速、波幅指数、波形关联维分形指数和声波频谱的频率矩。以这4个特征参数作为输入向量,海底沉积物的结构类型作为输出向量,建立径向基概率神经网络模型。研究表明建立的神经网络模型具有较强的海底沉积物分类预报能力。  相似文献   

7.
A rapid real-time adjustment scheme is proposed for improving the precision of the conventional short-base line (SBL) positioning fix system used by submarines and other underwater vehicles. In the proposed approach, an initial position estimate is obtained by solving the conventional SBL tracking equations of the submarine given the assumptions of a constant speed of sound in water and a straight-line propagation path. In the first stage of the real-time adjustment procedure, this initial estimate is corrected using an iterative computation scheme based on a 3D geometry model. The improved position estimate is then used to compute a new, more accurate value of the speed of sound in water. Finally, in the second stage of the real-time adjustment procedure, the corrected speed of sound in water and the discrepancy between the original and corrected position estimates obtained in the first adjustment procedure are applied to update the coordinates of the submarine based on the second signal received from the pinger. The numerical results show that the proposed real-time adjustment system yields a significant improvement in the accuracy of the positioning fix estimates compared to those obtained from the conventional SBL method or the SBL method with the first adjustment procedure only.  相似文献   

8.
海洋测深中,海底混响信号是测深仪回波信号检测的主要内容。测深仪通常采用信号的相关处理方法对其进行检测,因此在设计测深仪的回波处理单元时,系统地分析海底混响信号的相关特性就显得尤为重要,对混响信号仿真是分析其特性的有效手段。基于单元散射理论,依据海底散射系数的空间相关半径划分散射单元,给出垂直分置海底混响信号的仿真方法。研究结果表明,该模型物理意义明确,计算简单。仿真得到的海底混响信号具有非常好的空间相关性和时间自相关性,与实测的海底混响信号相符,可用于对混响场特性的分析,改善测深仪的设计,从而有效提高测深仪的测量精度。  相似文献   

9.
Signals from an explosive source backscattered from the seafloor and received at long range by hydrophones of a towed array are processed to estimate the directional distribution of energy for a given time increment. As assembly of these data shows the time and amplitude of scattering features, and after conversion to distance, the geographic location of the return. A frequency-domain beam-forming procedure is used in which beam levels are averaged over a given band of a broad-band source. The processing is applied to experimental data obtained in the southern Tyrrhenian Sea. The major backscattering occurred at the Baconi Seamounts and the coastal margin of Sardinia.  相似文献   

10.
The Pasisar seismic acquisition system combines a source at the sea surface and a deep-towed single channel streamer. This unconventional device geometry reduces the width of the first Fresnel zone which increases the lateral resolution. However, the device acquisition geometry generates artifacts on seismic profiles and induces large incidence angles of the seismic signal. A specific processing sequence must be applied to the data to obtain a readable seismic section. Penetration of the seismic signal depends on the energy of the signal reaching the seafloor and on its incidence angle. Because of smaller source energy, 800 Joules Sparker data cannot be acquired in water depth larger than 1500 m for example, whereas there is no depth limit for the use of this system with air gun sources. Differential acoustic absorption of seismic frequencies (below 1000 Hz) in the water column is negligible when compared with wave fronts expansion. Thus, the horizontal resolution of any seismic system strongly depends on the frequency spectrum of the seismic source and on the travel distances. Pasisar and conventional seismic profiles being usually simultaneously recorded, we illustrate the interest of using a hybrid seismic device by comparing horizontal resolutions as well as signal-to-noise ratio obtained with both the Pasisar and conventional systems. In addition, by carefully picking time arrivals of a reflection on simultaneously recorded surface and deep-towed seismic records, it is possible to estimate the average interval seismic velocity. We present the simplified example of a horizontal reflector.  相似文献   

11.
A new set of Boussinesq-type equations describing the free surface evolution and the corresponding depth-integrated horizontal velocity is derived with the bottom boundary layer effects included. Inside the boundary layer the eddy viscosity gradient model is employed to characterize Reynolds stresses and the eddy viscosity is further approximated as a linear function of the distance measured from the seafloor. Boundary-layer velocities are coupled with the irrotational velocity in the core region through boundary conditions. The leading order boundary layer effects on wave propagation appear in the depth-integrated continuity equation to account for the velocity deficit inside the boundary layer. This formulation is different from the conventional approach in which a bottom stress term is inserted in the momentum equation. An iterative scheme is developed to solve the new model equations for the free surface elevation, depth-integrated velocity, the bottom stress, the boundary layer thickness and the magnitude of the turbulent eddy viscosity. A numerical example for the evolution of periodic waves propagating in one-dimensional channel is discussed to illustrate the numerical procedure and physics involved. The differences between the conventional approach and the present formulation are discussed in terms of the bottom frictional stress and the free surface profiles.  相似文献   

12.
In July 2000, an array of instruments called acoustic extensometers was deployed at the Cleft segment of the southern Juan de Fuca Ridge, a seafloor observatory site selected by the National Science Foundation RIDGE Program. These instruments are designed to precisely measure horizontal deformation across the axis of a mid-ocean ridge in order to detect and quantify seafloor spreading events. The instruments were deployed in semipermanent seafloor benchmarks in a linear array that is 1.2-km long and spans the floor of the axial valley. The instruments make daily measurements of distance to their neighbors in the array by recording the round trip travel time of 100-kHz acoustic pulses, and simultaneous temperature measurements are used to correct the ranges for sound speed variations. The instruments are expected to have lifetimes of at least five years. In addition, precise pressure measurements have been made at each benchmark with a remotely operated vehicle in order to monitor for vertical deformation across the array. Preliminary results show that the resolution of the acoustic measurements is ±1-2 cm and that no abrupt deformation events occurred during the first year  相似文献   

13.
A design is presented for an expendable seafloor penetrometer system for real time classification of marine sediments and estimate for shear strength. An accelerometer in the nose section of an expendable probe senses deceleration after impact with the ocean bottom and provides this data to the underway launch platform via a two-conductor trailing wire umbilical. Signals are amplified, digitized and processed by microcomputer to provide seafloor classification in virtual real time.  相似文献   

14.
An ahead-looking probe of some kind, optical or acoustic, is critical when one is attempting seafloor exploration from a mobile platform. A single-frequency, split aperture sonar system can be used for this purpose, but a wideband monopulse sonar offers many advantages. It computes a running estimate of the vertical directional cosine of the source of the echo, and can thus reveal the positions of multiple wave scatterers as long as their echoes can still be time resolved. Theoretical studies of its performance have been made previously, but were directly applicable only to extremely simple seafloor geometries. A new time-domain digital simulation that largely circumvents this limitation has been developed. The simulation also provides a means for testing the theory and optimizing system parameters. The reverberation model does not account for some features of acoustic backscattering such as diffraction, but it is believed to be adequate for the investigation of most signal processing aspects of the sonar system. The theory of the simulation is developed and several examples are presented and discussed. In addition, some preliminary results are presented from a sea test that used the air-sea interface as a surrogate seafloor  相似文献   

15.
The relative height of the seafloor can be estimated by using two vertically displaced receivers. In this paper, we propose techniques to improve the accuracy of the estimated height. Our results are based on the use of synthetic aperture sonar (SAS) imaging, which implies coherent addition of complex images acquired from a moving platform. The SAS processing improves the along-track (or azimuth) resolution, as well as the signal-to-noise ratio (SNR), which in turn improves the estimated height accuracy. We show that the shift of the effective center frequency induced by coherent, frequency-dependent scattering affect the time-delay estimates from complex cross correlations, and we propose a correction technique for broadband signals with uneven magnitude spectra. To reduce the effect of geometrical decorrelation and increase the coherence between the images, we beamform the sonar images onto an a priori estimate of the seafloor height before correlating. We develop a mathematical model for the imaging geometry. Finally, we demonstrate our proposed estimators by providing relative seafloor height estimates from real aperture and SAS images, obtained during the InSAS-2000 experiment at Elba Island in Italy. In particular, we demonstrate that the SAS image quality is significantly improved by inclusion of the height estimates as a priori information.  相似文献   

16.
Processing simultaneous bathymetry and backscatter data, multibeam echosounders (MBESs) show promising abilities for remote seafloor characterization. High-frequency MBESs provide a good horizontal resolution, making it possible to distinguish fine details at the water-seafloor interface. However, in order to accurately measure the seafloor influence on the backscattered energy, the recorded sonar data must first be processed and cleared of various artifacts generated by the sonar system itself. Such a preprocessing correction procedure along with the assessment of its validity limits is presented and applied to a 95-kHz MBES (Simrad EM 1000) data set. Beam pattern effects, uneven array sensitivities, and inaccurate normalization of the ensonified area are removed to make possible further quantitative analysis of the corrected backscatter images. Unlike low-frequency data where the average backscattered energy proves to be the only relevant feature for discriminating the nature of the seafloor, high-frequency MBES backscatter images exhibit visible texture patterns. This additional information involves different statistical distributions of the backscattered amplitudes obtained from various seafloor types. Non-Rayleigh statistics such as K-distributions are shown to fit correctly the skewed distributions of experimental high-frequency data. Apart from the effect of the seafloor micro-roughness, a statistical model makes clear a correlation between the amplitude statistical distributions and the signal incidence angle made available by MBES bathymetric abilities. Moreover, the model enhances the effect of the first derivative of the seafloor backscattering strength upon statistical distributions near the nadir and at high incidence angles. The whole correction and analysis process is finally applied to a Simrad EM 1000 data set.  相似文献   

17.
海洋中声速起伏导致水声信道发生变化,进而引起声线到达结构的变化,对水声传播及定位精度产生一定影响。为讨论这一效应,基于TDOA体制建立了考虑声线弯曲的水下目标无源定位模型,分析了声速起伏对水下声传播路径及传播时间的影响,进而研究了声速起伏对水下无源定位测量精度影响程度。结果表明:当水平传播距离较大时,声速剖面起伏对声传播路径及传播时间的影响更为显著;以典型四元阵为例,若基线长度为20 km,接收阵位于水下5 km处,在不考虑其它随机误差影响下,海洋声速起伏造成的声源定位误差量级在0.5 m以内。分析结果有助于更好地利用环境特征优化无源定位测量方案,可为高精度水下无源定位系统设计及精度评估提供依据。  相似文献   

18.
Two computer models are presented, one for short-range and one for long-range propagation of acoustic signals through an underwater channel from a transmitter to a receiver. In the short-range model, the received signal is due to a direct path (steady component) and a random path (diffused component) that could be the result of boundary scattering. For the long-range case, the received signal is the superposition of a number of time-delayed, randomly propagated components arriving by different paths. Both models assume perfect transmitter-receiver synchronization but use realistic channel time delays. They demonstrate the time-varying characteristics of underwater acoustic channels and are used in simulations to evaluate the performance of the detection technique  相似文献   

19.
An optical fiber strainmeter intended for measuring tectonic strains on the seafloor is under development. In this instrument, an optical fiber is stretched between two points fixed to the ocean bottom; relative displacement of these points causes a change in the elongation of the fiber. This associated change in optical path length is monitored by an electronic distance meter. The dominant sources of noise in determining the optical path length of the fiber stem from the dependence of the fiber's index of refraction on both wavelength and temperature. In a 50 day long experiment performed in the shallow ocean, a test fiber was installed along a 210 m long baseline on the bottom. The RMS variation in length was 5 mm except for two displacements of order 10 cm caused by known effects.  相似文献   

20.
The variation of the backscatter strength with the angle of incidence is an intrinsic property of the seafloor, which can be used in methods for acoustic seafloor characterization. Although multibeam sonars acquire backscatter over a wide range of incidence angles, the angular information is normally neglected during standard backscatter processing and mosaicking. An approach called Angular Range Analysis has been developed to preserve the backscatter angular information, and use it for remote estimation of seafloor properties. Angular Range Analysis starts with the beam-by-beam time-series of acoustic backscatter provided by the multibeam sonar and then corrects the backscatter for seafloor slope, beam pattern, time varying and angle varying gains, and area of insonification. Subsequently a series of parameters are calculated from the stacking of consecutive time series over a spatial scale that approximates half of the swath width. Based on these calculated parameters and the inversion of an acoustic backscatter model, we estimate the acoustic impedance and the roughness of the insonified area on the seafloor. In the process of this inversion, the behavior of the model parameters is constrained by established inter-property relationships. The approach has been tested using a 300 kHz Simrad EM3000 multibeam sonar in Little Bay, NH. Impedance estimates are compared to in situ measurements of sound speed. The comparison shows a very good correlation, indicating the potential of this approach for robust seafloor characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号