首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
青海贵德县扎仓温泉特征及其开发利用   总被引:1,自引:1,他引:0  
方斌  周训  梁四海 《现代地质》2009,23(1):57-63
扎仓温泉位于青海省贵德县扎仓寺村,其开发利用至今已有600多年的历史。温泉出露于断裂带交汇部位,地下热水矿化度为1 310~1 390 mg/L, 水化学类型属于SO4·Cl-Na型。研究结果表明,温泉的补给来源为大气降水,温泉水年龄约165 a。利用SiO2温标法计算出热储温度为136 ℃,估算热水循环深度为1 385 m。温泉的天然放热量大于1.23×1014J/a,扎仓沟地区的地热资源量达2.07×1014J以上。热水宜直接用于供暖、洗浴、温室种植和养殖等。该地热田深部尚有地热能潜力。  相似文献   

2.
河北丰宁县洪汤寺温泉的水化学与同位素特征   总被引:2,自引:1,他引:1       下载免费PDF全文
河北丰宁县的洪汤寺温泉出露于燕山期第四期的钾长花岗岩中,是由地下水接受大气降水入渗补给后向深处循环获得热量上升到地表后形成的。其TDS小于400mg/L,主要阳离子为Na+,主要阴离子为SO42-和HCO 3-,水化学类型属于SO4.HCO3—Na型水,特点为F-、偏硅酸以及氡含量高,分别为17.5mg/L、75.7mg/L和131.1 Bq/L。热水的同位素资料表明,洪汤寺温泉热水起源于大气降水,用氚法估算出的年龄在22a以上。利用地热温标估算地下热储温度范围为79~109℃。钻孔揭露后自流量增大,达11.6 L/s。  相似文献   

3.
藏北羌塘中部吉瓦地热田的特征及其资源评价   总被引:1,自引:0,他引:1  
方斌  杨运军  王根厚  周训  陈胜男 《地质通报》2009,28(9):1335-1341
吉瓦温泉位于西藏尼玛县绒马乡吉瓦村北。温泉出露于一个新生代断陷盆地之中,受江爱藏布活动断裂带的控制。地下热水矿化度为5.54×103~5.58×103mg/L,水化学类型属Na-Cl·HCO3型。温泉水中H2SiO3、Li+、F-等含量较高,这3项指标满足医疗矿水的标准。热水系统的热源来自于地壳中的部分熔融层,热水的补给来源主要为大气降水,伴有深部热液加入。混合模型研究显示,温泉水为地下热水和冷水的混合物,冷水占的比例介于77%~95%之间,混合水的循环年龄约31a,利用SiO2温标法计算出浅部热储温度为120℃,深度为832m。混合前热水温度为215~280℃,对应深部热储深度为1466~1900m。吉瓦热田面积约6km2,天然放热量为7.53×1013 J/a,地热资源量为32606×1014 J。  相似文献   

4.
北京延庆县松山温泉的特征与成因   总被引:1,自引:0,他引:1  
龙汨  周训  李婷  王晓翠  唐丽伟  陈婷  郭帅 《现代地质》2014,28(5):1053-1060
松山温泉位于北京市延庆县松山森林公园内,附近为燕山期花岗岩,岩体裂隙较发育。在该温泉附近施工的2个钻孔自流热水。温泉及其附近自流孔热水水温为32~42 ℃,主要阳离子为Na+、K+和Ca2+,主要阴离子为SO42-、HCO-3和Cl-,水化学类型为SO4-Na型;热水矿化度为0.548~0.566 g/L,pH值为9.14~9.21,H2SiO3含量为87.1~97.1 mg/L,F-含量为19.0~20.8 mg/L。氢、氧同位素资料表明,研究区地下热水来源于大气降水;估算的补给高程为1 256~1 351 m,补给区温度为4.4~8.8 ℃,热水年龄为14.19~48.95 a,地下热储温度为114~119 ℃,热水循环深度为2 236~2 274 m。松山温泉为花岗岩中地下水在山区获得大气降水入渗补给后,在经历深循环过程中获得深部热流加热后上升在山坡上出露形成的温泉。  相似文献   

5.
位于云南省云龙县的羊吃蜜温泉自巨厚灰岩溶隙向外流出。温泉区沿河谷分布有第四系砂卵石,下伏地层为二叠系—三叠系碳酸盐岩。泉水共有泉眼3个,水温为356~359 ℃,流量约025 m3/s,pH值63~65,总溶解性固体(TDS)为0982~1116 g/L,F-含量为086~192 mg/L,偏硅酸为24~242 mg/L。泉水中的主要阳离子为Na+、K+、Ca2+和Mg2+,主要阴离子为SO42-、HCO3-和Cl-,水化学类型为HCO3·SO4 Ca型。氢、氧稳定同位素显示,温泉热水来源于大气降水;估算的热水补给高程为2 500 m左右;地下热储温度为60~70 ℃;地下热水循环深度约为1 255 m。羊吃蜜温泉地处云南兰坪盆地红色含盐地层中突起的石灰岩分布区,地下水在补给区获得大气降水入渗补给后沿巨厚灰岩含水层经历深循环获得大地热流加热后上涌在河谷流出地面,是侵蚀岩溶低温温泉。  相似文献   

6.
查孜地热田位于青藏高原西南部。通过野外地质调查及地热钻孔揭露,发现该地热田具有较好的地热资源开发潜力。对该地热田地下热水的水文地球化学及同位素特征开展研究,发现地下热水为HCO3-Na型; 热水与冷水的离子浓度存在差异,显示二者具有不同的物质来源,但又具有一定的水力联系。热水中的δD和δ18O同位素特征表明: 该地热田地下热水的主要补给来源为大气降水和冰雪融水,补给海拔为5 652 m以上; 大气降水和冰雪融水下渗并与沿断裂破碎带向上运移的地热流体混合后形成地下热水。断裂破碎带不仅是温泉的主要通道,也是地热流体的储集场所,地热田热水在地下运移滞留至少41 a。据SiO2地热温标估算得出,该区地下热储温度为148.18 ~153.49 ℃,天然放热量为2 264.33×1012 J/a。  相似文献   

7.
西藏日多温泉水化学特征及其物质来源   总被引:1,自引:0,他引:1  
热泉水的水化学特征包含其形成过程中地质、构造、断裂、蚀变以及环境变化等多种信息,是研究地热流体形成和物质来源最基本和最重要的特征之一。西藏日多温泉发育于古新统典中组(E1d)和下白垩统林布宗组(K1l)地层。水化学特征显示:日多温泉地下热储温度为97.5 ℃~110.1 ℃之间,pH值为中性,水化学类型为SO4·HCO3-Na型,阳离子以Na+、Ca2+、K+为主,阴离子以Cl-、SO42-、HCO3-为主,并富含HBO2、H2SiO3、F、Li、Sr、Cs、As,矿化度介于1 162 mg/L~1 245 mg/L之间,符合理(医)疗热矿泉水水质标准。温泉水富含多种矿物组分的特征,与温泉水循环深度大、地下滞留时间较长(推测大于48 a)、地下热水与火山岩水-岩作用强烈有直接关系。综合研究热矿水的水化学特征,有助于更好地认识热泉水的形成过程,为热泉资源的开发利用和保护提供科学依据。   相似文献   

8.
山东地下热水资源的形成与开发前景   总被引:4,自引:2,他引:4  
刘善军 《山东地质》1997,13(2):48-53
山东省天然温泉有18处,自70年代至今,又相继发现地下热水出露点20处。地下热水的赋存形式为层状和带,脉状,其中曲岩山区及沂沭断裂带的热 多为带,脉状;  相似文献   

9.
袁星芳 《地质与勘探》2020,56(2):427-437
胶东半岛蕴藏着丰富的低温地热资源,以温泉为主要出露方式。洪水岚汤温泉位于胶东半岛东部威海市境内,出露在阳泉河北岸的一级阶地,出露标高为66. 83 m,水温约69℃,下伏基岩为侏罗纪二长花岗岩。为查明其水化学特征及成因,本文采用同位素水文地球化学方法进行研究。水化学成分表明:温泉水中主要阳离子为Na~+,主要阴离子为HCO_3~-、SO_4~(2-),水化学类型为HCO_3·SO_4~-Na,pH值为7. 6,总溶解性固体为610. 6 mg/L,F~-含量为4. 2 mg/L,偏硅酸含量为98. 8 mg/L。氢、氧同位素分析结果显示:温泉热水补给来源为大气降水,估算温泉热水补给高程为427~599 m,地下热储温度约为106. 25℃,地下热水循环深度约为2091 m。综合分析洪水岚汤温泉成因模式为:在正棋山山区获得大气降水入渗补给后,沿F1断裂破碎带下渗经历深循环获得大地热流加热后上升,上升过程中混入浅层地下水,在第四系静水压力最小的部位出露成泉。  相似文献   

10.
为了对深变质岩区地热流体的成因和演化进行深入研究,在滇西陇川盆地开展了地质、放射性测量、磁法测量、水文地质和水文地球化学等调查工作,深入分析了盆地内尺巴处温泉的水文地球化学及同位素特征。结果表明:温泉水化学类型为HCO3·SO4·CO3-Na型,温泉中Li+质量浓度为0.220 mg/L,达到了锂矿泉水的命名标准,F-质量浓度为8.29 mg/L,可称为氟水,具医疗价值;温泉热水中冷水混入比例为0.72,热水补给高程为1 166.83 m,补给区温度为9.96℃,热储温度为191.71℃,循环深度为2 082.29 m,温泉天然放热量为9.49×1012 J/a;温泉水来源于大气降水,为深循环上升泉;地下水水化学组分的成因类型为岩石风化型,其主要组分来源于水岩相互作用;热源主要为深部未冷却的岩浆传导热及活动断裂产生的构造热,其次有少部分岩体中放射性同位素产生的放射热;深变质岩区温泉水中的pH值,SO42-、Cl-、Na+、SiO2质量浓度及总碱度高于冷水泉,Ca2+、Mg2+质量浓度低于冷水泉。  相似文献   

11.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

12.
针对兖州煤田下组煤深部开采受奥灰高承压水威胁以及当地大型煤化工企业生产用水量大的现状,在已进行的水文地质勘探及放水试验基础上,评价奥灰富水性,并采用有限差分法进行奥灰疏水降压数值模拟研究,提出水煤共采观点。研究结果表明:兖州煤田深部奥灰水压高,合理布置水煤共采孔,可以实现奥灰水位的有效疏降,疏降中心区水位最大降深可达110 m,突水系数显著下降,提高了下组煤开采的安全性;同时可提供煤化工43200 m3/d的供水量,能达到可持续的、水资源保护性的供水效果,实现下组煤的水煤共采。  相似文献   

13.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

14.
15.
16.
Partition coefficients of Hf,Zr, and REE between zircon,apatite, and liquid   总被引:25,自引:2,他引:25  
Concentration ratios of Hf, Zr, and REE between zircon, apatite, and liquid were determined for three igneous compositions: two andesites and a diorite. The concentration ratios of these elements between zircon and corresponding liquid can approximate the partition coefficient. Although the concentration ratios between apatite and andesite groundmass can be considered as partition coefficients, those for the apatite in the diorite may deviate from the partition coefficients. The HREE partition coefficients between zircon and liquid are very large (100 for Er to 500 for Lu), and the Hf partition coefficient is even larger. The REE partition coefficients between apatite and liquid are convex upward, and large (D=10–100), whereas the Hf and Zr partition coefficients are less than 1. The large differences between partition coefficients of Lu and Hf for zircon-liquid and for apatite-liquid are confirmed. These partition coefficients are useful for petrogenetic models involving zircon and apatite.  相似文献   

17.
The distribution of Cu, Co, As and Fe was studied downstream from mines and deposits in the Idaho Cobalt Belt (ICB), the largest Co resource in the USA. To evaluate potential contamination in ecosystems in the ICB, mine waste, stream sediment, soil, and water were collected and analyzed for Cu, Co, As and Fe in this area. Concentrations of Cu in mine waste and stream sediment collected proximal to mines in the ICB ranged from 390 to 19,000 μg/g, exceeding the USEPA target clean-up level and the probable effect concentration (PEC) for Cu of 149 μg/g in sediment; PEC is the concentration above which harmful effects are likely in sediment dwelling organisms. In addition concentrations of Cu in mine runoff and stream water collected proximal to mines were highly elevated in the ICB and exceeded the USEPA chronic criterion for aquatic organisms of 6.3 μg/L (at a water hardness of 50 mg/L) and an LC50 concentration for rainbow trout of 14 μg/L for Cu in water. Concentrations of Co in mine waste and stream sediment collected proximal to mines varied from 14 to 7400 μg/g and were highly elevated above regional background concentrations, and generally exceeded the USEPA target clean-up level of 80 μg/g for Co in sediment. Concentrations of Co in water were as high as in 75,000 μg/L in the ICB, exceeding an LC50 of 346 μg/L for rainbow trout for Co in water by as much as two orders of magnitude, likely indicating an adverse effect on trout. Mine waste and stream sediment collected in the ICB also contained highly elevated As concentrations that varied from 26 to 17,000 μg/g, most of which exceeded the PEC of 33 μg/g and the USEPA target clean-up level of 35 μg/g for As in sediment. Conversely, most water samples had As concentrations that were below the 150 μg/L chronic criterion for protection of aquatic organisms and the USEPA target clean-up level of 14 μg/L. There is abundant Fe oxide in streams in the ICB and several samples of mine runoff and stream water exceeded the chronic criterion for protection of aquatic organisms of 1000 μg/L for Fe. There has been extensive remediation of mined areas in the ICB, but because some mine waste remaining in the area contains highly elevated Cu, Co, As and Fe, inhalation or ingestion of mine waste particulates may lead to human exposure to these elements.  相似文献   

18.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

19.
The crystal/liquid partition coefficients of Lu, Hf, Ti, Mn and Ca have been measured between olivine, clinopyroxene and basaltic melt. The Ti, Mn, and Ca partition coefficients were determined at natural abundance levels. The Lu and Hf partition coefficients were determined at doping levels ranging from 0.5 to 1.5 wt% “trace element” as oxide in order to allow analysis by electron microprobe. Olivine/liquid partition coefficients for Lu, Hf, Ti, Mn, and Ca were determined at 1 bar and temperatures from 1150 to 1177° C. Clinopyroxene/liquid partition coefficients were determined for Lu, Hf, Ti, and Mn at pressures of 10, 15, and 20 kbars and temperatures from 1250 to 1290° C. The olivine/liquid partition coefficients of Hf, Lu, Ti, and Ca are small. D(Hf-ol) is zero within the analytical uncertainty. Both D(Lu-ol) and D(Mn-ol) decrease with increasing temperature, but D(Ti-ol) and D(Ca-ol) are constant over the narrow temperature range studied. The partition coefficient results are summarized below.
T°C  相似文献   

20.
Stratiform quartz-sulphide lodes in Ingladhal occur in a typical Precambrian green-stone-belt environment comprising metabasalts, tuff, chert and cherty iron-sulphide formation. Unusually high cobalt contents of metavolcanics and of sulphide minerals in orebodies suggest a consanguinity between ores and rocks. 90% of total nickel, 70% of total cobalt but only 30% of total copper in rocks occur in silicate phases and thus indicate an early separation of copper from cobalt and nickel. Unusually high non-sulphide copper in barren bedded cherts implies availability of Cu-rich solution prior to their lithification. Pyrite in sediments, in volcanics, and in orebodies is characterized by a distinctive pattern of Co-Ni distribution in each case. Partitioning of Co and Ni between coexisting sulphide pairs is complex, but gross equilibrium is indicated. Very high trace metal content of orebody pyrite sharply contrasts with very low such values in pyrite from adjacent sediments and points to a higher temperature of formation of orebodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号