首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   3篇
  国内免费   2篇
测绘学   4篇
大气科学   18篇
地球物理   26篇
地质学   57篇
海洋学   6篇
天文学   26篇
自然地理   6篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   9篇
  2012年   1篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   7篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1981年   7篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
  1960年   1篇
  1957年   1篇
  1955年   1篇
  1949年   1篇
  1927年   1篇
  1914年   1篇
  1913年   1篇
排序方式: 共有143条查询结果,搜索用时 171 毫秒
31.
As part of ongoing research to find distal tephra, two lacustrine cores were analysed for the presence of volcanic ash layers, not visible to the naked eye: Soppensee, in Switzerland, and Rotmeer, in Southern Germany. The Laacher See Tephra (12,900 ka BP) is present as a visible layer in both sites. In both cores we found a discrete tephra horizon, with similar morphologies, in the middle of the biostratigraphic units equivalent to the Younger Dryas stadial. The vitreous components of these two tephra layers are geochemically identical. Comparison of the geochemical, stratigraphical, and chronological data from both sites, strongly suggest that the tephra can be attributed to the Icelandic Vedde Ash, a widely distributed horizon found throughout the North Atlantic and Northern Europe. Our results indicate that a precise and direct correlation between the Greenland ice cores and Central European sequences is now possible, based on a co-located tephra layer. This means that there is now the potential, to independently test climate synchronicity between Greenland and Europe, as far south as the Alps.  相似文献   
32.
Scattered ground roll is a type of noise observed in land seismic data that can be particularly difficult to suppress. Typically, this type of noise cannot be removed using conventional velocity‐based filters. In this paper, we discuss a model‐driven form of seismic interferometry that allows suppression of scattered ground‐roll noise in land seismic data. The conventional cross‐correlate and stack interferometry approach results in scattered noise estimates between two receiver locations (i.e. as if one of the receivers had been replaced by a source). For noise suppression, this requires that each source we wish to attenuate the noise from is co‐located with a receiver. The model‐driven form differs, as the use of a simple model in place of one of the inputs for interferometry allows the scattered noise estimate to be made between a source and a receiver. This allows the method to be more flexible, as co‐location of sources and receivers is not required, and the method can be applied to data sets with a variety of different acquisition geometries. A simple plane‐wave model is used, allowing the method to remain relatively data driven, with weighting factors for the plane waves determined using a least‐squares solution. Using a number of both synthetic and real two‐dimensional (2D) and three‐dimensional (3D) land seismic data sets, we show that this model‐driven approach provides effective results, allowing suppression of scattered ground‐roll noise without having an adverse effect on the underlying signal.  相似文献   
33.
34.
This paper presents the main results of the evaluation of residual inter‐story drift demands in typical moment‐resisting steel buildings designed accordingly to the Mexican design practice when subjected to narrow‐band earthquake ground motions. Analytical 2D‐framed models representative of the study‐case buildings were subjected to a set of 30 narrow‐band earthquake ground motions recorded on stations placed in soft‐soil sites of Mexico City, where most significant structural damage was found in buildings as a consequence of the 1985 Michoacan earthquake, and scaled to reach several levels of intensity to perform incremental dynamic analyses. Thus, results were statistically processed to obtain hazard curves of peak (maximum) and residual drift demands for each frame model. It is shown that the study‐case frames might exhibit maximum residual inter‐story drift demands in excess of 0.5%, which is perceptible for building's occupants and could cause human discomfort, for a mean annual rate of exceedance associated to peak inter‐story drift demands of about 3%, which is the limiting drift to avoid collapse prescribed in the 2004 Mexico City Seismic Design Provisions. The influence of a member's post‐yield stiffness ratio and material overstrength in the evaluation of maximum residual inter‐story drift demands is also discussed. Finally, this study introduces response transformation factors, Tp, that allow establishing residual drift limits compatible with the same mean annual rate of exceedance of peak inter‐story drift limits for future seismic design/evaluation criteria that take into account both drift demands for assessing a building's seismic performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
35.
We separate and quantify the sources of uncertainty in projections of regional (~2,500 km) precipitation changes for the twenty-first century using the CMIP3 multi-model ensemble, allowing a direct comparison with a similar analysis for regional temperature changes. For decadal means of seasonal mean precipitation, internal variability is the dominant uncertainty for predictions of the first decade everywhere, and for many regions until the third decade ahead. Model uncertainty is generally the dominant source of uncertainty for longer lead times. Scenario uncertainty is found to be small or negligible for all regions and lead times, apart from close to the poles at the end of the century. For the global mean, model uncertainty dominates at all lead times. The signal-to-noise ratio (S/N) of the precipitation projections is highest at the poles but less than 1 almost everywhere else, and is far lower than for temperature projections. In particular, the tropics have the highest S/N for temperature, but the lowest for precipitation. We also estimate a ‘potential S/N’ by assuming that model uncertainty could be reduced to zero, and show that, for regional precipitation, the gains in S/N are fairly modest, especially for predictions of the next few decades. This finding suggests that adaptation decisions will need to be made in the context of high uncertainty concerning regional changes in precipitation. The potential to narrow uncertainty in regional temperature projections is far greater. These conclusions on S/N are for the current generation of models; the real signal may be larger or smaller than the CMIP3 multi-model mean. Also note that the S/N for extreme precipitation, which is more relevant for many climate impacts, may be larger than for the seasonal mean precipitation considered here.  相似文献   
36.
Within the Pilbara Block of Western Australia, a complex of migmatite, gneissic and foliated granite near Marble Bar is intruded by a stock of younger massive granite (the Moolyella Granite) with which swarms of tin‐bearing pegmatites are associated. The age of the older granite has been determined by the Rb‐Sr method as 3,125 ± 366 m.y., and that of the Moolyella Granite as 2,670 ± 95 m.y. Initial Sr87/Sr86 ratios suggest that the older granite is close to primary crustal material, but that the Moolyella Granite consists of reworked material. It probably formed by partial remelting of the older granite.  相似文献   
37.
The Danube Delta-Black Sea region of Romania is an important wetland, and this preliminary study evaluates the significance of this region as a source of atmospheric CH4. Measurements of the mixing ratio and δ13C in CH4 are reported from air and water samples collected at eight sites in the Danube Delta. High mixing ratios of CH4 were found in air (2500–14,000 ppb) and dissolved in water samples (∼1–10 μmol L−1), demonstrating that the Danube Delta is an important natural source of CH4. The intercepts on Keeling plots of about −62‰ show that the main source of CH4 in this region is microbial, probably resulting primarily from acetate fermentation. Atmospheric CH4 and CO data from the NOAA/ESRL (National Oceanic and Atmospheric Administration/Earth System Research Laboratory) were used to make a preliminary estimate of biogenic CH4 at the Black Sea sampling site at Constanta (BSC). These data were used to calculate ratios of CH4/CO in air samples, and using an assumed CH4/CO anthropogenic emissions ratio of 0.6, fossil fuel emissions at BSC were estimated. Biogenic CH4 emissions were then estimated by a simple mass balance approach. Keeling plots of well-mixed air from the BSC site suggested a stronger wetland source in summer and a stronger fossil fuel source in winter.  相似文献   
38.
39.
Assessing the sensitivity of Canada's ecosystems to climatic change   总被引:1,自引:0,他引:1  
Global warming due to increased concentrations of atmospheric CO2 is expected to be amplified in middle and higher latitudes. Consequently, ecosystems in these latitudes will experience more pronounced climatic variations. This investigation attempts to assess the sensitivity of Canada's ecosystems to climatic change. Potential ecological impacts resulting from global warming are outlined. With this background, the effects of a doubled CO2 climate are applied to a classification model derived from the current ecological setting. Results reveal not only major shifts in ecological boundaries but also changes in the character of these broadly distributed ecosystems.  相似文献   
40.
Water samples were collected from the Truckee River-Pyramid Lake system, the Walker River-Walker Lake system, and the Carson River, all located in eastern California and western Nevada, U.S.A., at three different times (i.e., summer 1991, spring 1992, and autumn 1992) over a two year period. The concentrations of As, Na, Cl, PO4, and pH were measured in these river samples and the associated terminal lakes. Arsenic values ranged from below 13 nmol/kg near Truckee, California to 160 nmol/kg at Nixon, Nevada in the Truckee River, from 40 nmol/kg in the headwaters of both West and East Walker Rivers to 270 nmol/kg below Weber Reservoir on the main branch of the Walker River, and from <27 nmol/kg to 234 nmol/kg for the lower Carson River system. Arsenic concentrations in Steamboat Creek (0.91 mol/kg–1.80 mol/kg) in the Truckee River catchment are above the U.S. EPA drinking water maximum contaminant level of 0.67 mol/kg, as are the As concentrations in both Pyramid Lake (1.33 mol/kg–1.57 mol/kg ) and Walker Lake (13.7 mol/kg–18.7 mol/kg). Sources of As for all three rivers include weathering of As-rich rocks and/or regolith and input of high-As geothermal spring waters, both processes primarily, although not exclusively, adding As to the headwater regions of these rivers. Steamboat Hot Springs (29 mol/kg As 54.5 mol/kg), for example, is identified as a source of As to the Truckee River via Steamboat Creek. The high As concentrations in Pyramid and Walker Lakes are likely due to (1) desorption of arsenate from aquatic particulate matter in these high pH waters (9.0 pH 9.5), (2) limited biologic uptake of arsenate, and (3) evaporative concentration of the lake waters. Evaluation of molar PO4}/As ratios of river waters and geothermal spring waters (e.g., Steamboat Hot Springs), indicates that phosphate is substantially enriched in Steamboat Creek as well as the mid to lower reaches of the Walker and Carson Rivers. These regions of each river are dominated by agricultural interests and, additionally, in the case of Steamboat Creek, residential areas and golf courses. Our data strongly imply that phosphate-rich agricultural return flow has likely added P to these streams and, consequently, increased their respective P:As ratios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号