首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1204篇
  免费   69篇
  国内免费   12篇
测绘学   25篇
大气科学   91篇
地球物理   292篇
地质学   475篇
海洋学   118篇
天文学   212篇
综合类   2篇
自然地理   70篇
  2023年   8篇
  2021年   14篇
  2020年   17篇
  2019年   33篇
  2018年   34篇
  2017年   34篇
  2016年   37篇
  2015年   45篇
  2014年   54篇
  2013年   81篇
  2012年   50篇
  2011年   70篇
  2010年   52篇
  2009年   85篇
  2008年   58篇
  2007年   53篇
  2006年   56篇
  2005年   52篇
  2004年   54篇
  2003年   40篇
  2002年   33篇
  2001年   24篇
  2000年   14篇
  1999年   16篇
  1998年   12篇
  1997年   14篇
  1996年   14篇
  1995年   14篇
  1994年   7篇
  1993年   12篇
  1992年   14篇
  1991年   5篇
  1990年   4篇
  1989年   14篇
  1988年   6篇
  1987年   11篇
  1985年   8篇
  1984年   6篇
  1983年   17篇
  1982年   10篇
  1981年   14篇
  1980年   6篇
  1979年   7篇
  1978年   12篇
  1977年   5篇
  1976年   7篇
  1975年   7篇
  1974年   7篇
  1969年   6篇
  1968年   3篇
排序方式: 共有1285条查询结果,搜索用时 531 毫秒
181.
The snow cover of the Northern Patagonia Icefield (NPI) was monitored after applying the Normalized Difference Snow Index (NDSI) and the Red/NIR band ratio to 134 Moderate Resolution Imaging Spectroradiometer (MODIS) images captured between 2000 and 2006. The final results show that the snow cover extent of the NPI fluctuates a lot in winter, in addition to its seasonal behaviour. The minimum snow cover extent of the period (3600 km2) was observed in March 2000 and the maximum (11,623 km2) in August 2001. We found that temperature accounts for approximately 76% of the variation of the snow cover extent over the entire icefield. We also show two different regimes of winter snow cover fluctuations corresponding to the eastern and the western sides of the icefield. The seasonality of the snow cover on the western side was determined by temperature rather than precipitation, while on the east side the seasonality of the snow cover was influenced by the seasonal behaviour of both temperature and precipitation. This difference can be explained by the two distinct climates: coastal and continental. The fluctuations in the winter snow cover extent were more pronounced and less controlled by temperature on the western side than on the eastern side of the icefield. Snow cover extent was correlated with temperature R2 = 0.75 and R2 = 0.74 for the western and eastern sides, respectively. Since limited meteorological data are available in this region, our investigation confirmed that the change in snow cover is an interesting climatic indicator over the NPI providing important insights in mass balance comprehension. Since snow and ice were distinguished snow cover fluctuations can be associated to fluctuations in the snow accumulation area of the NPI. In addition, days with minimum snow covers of summer season can be associated to the period in which Equilibrium Line Altitude (ELA) is the highest.  相似文献   
182.
Interplay of S and As in Mekong Delta sediments during redox oscillations   总被引:1,自引:1,他引:0  
The cumulative effects of periodic redox cycling on the mobility of As,Fe,and S from alluvial sediment to groundwater were investigated in bioreactor experiments.Two particular sediments from the alluvial floodplain of the Mekong Delta River were investigated:Matrix A(14 m deep)had a higher pyrite concentration than matrix B(7 m deep)sediments.Gypsum was present in matrix B but absent in matrix A.In the reactors,the sediment suspensions were supplemented with As(Ⅲ)and SO_4~(2-),and were subjected to three full-redox cycles entailing phases of nitrogen/CO_2,compressed air sparging,and cellobiose addition.Major differences in As concentration and speciation were observed upon redox cycling.Evidences support the fact that initial sediment composition is the main factor controlling arsenic release and its speciation during the redox cycles.Indeed,a high pyrite content associated with a low SO_4~(2-)content resulted in an increase in dissolved As concentrations,mainly in the form of As(Ⅲ),after anoxic half-cycles;whereas a decrease in As concentrations mainly in the form of As(Ⅴ),was instead observed after oxic half-cycles.In addition,oxic conditions were found to be responsible for pyrite and arsenian pyrite oxidation,increasing the As pool available for mobilization.The same processes seem to occur in sediment with the presence of gypsum,but,in this case,dissolved As were sequestered by biotic or abiotic redox reactions occurring in the Fe—S system,and by specific physico-chemical condition(e.g.pH).The contrasting results obtained for two sediments sampled from the same core show that many complexes and entangled factors are at work,and further refinement is needed to explain the spatial and temporal variability of As release to groundwater of the Mekong River Delta(Vietnam).  相似文献   
183.
Sanguinet lake is separated from the Atlantic Ocean by a wide Holocene coastal dunes system in SW France. The present day lake level is 21 m above mean sea level (msl). It formed when aeolian sand closed the mouth of the small La Gourgue river which gradually became a lagoon and then a lake. Dated sub‐lacustrine archaeological remains (human settlements, canoes, and wooden architectural structures), as well as paleoenvironmental evidence (drowned tree stumps and lagoonal deposits exposed on the beach) are used to interpret the formation and chronology of lake level rise during the past 4000 years. Around 2000–1650 B.C., the river flowed into a lagoon or an estuary which connected with the ocean west of the present Sanguinet Lake. Its level was affected by the tide, which ranged between 2 m below and 3 m above msl. The accumulation of aeolian sand before 1500–1000 B.C. began to close the connection with the sea. At this time, the elevation of the surface of the lake water was approximately 5 m above msl, but it still remained connected to the ocean. Around 1000 B.C., the lake level rose quickly by 1 to 2 m during a period of renewed mobility of the coastal aeolian sand, and continued to rise slowly until about 100 A.D. when there was a gradual closure of the lake outlet. This rise forced people who were living on the lake shore and along the rivers to move to higher land along the valley. The nearby Gallo‐Roman site of Losa was settled at the end of the 1st century B.C.; then the final blocking of the outlet occurred because of spit growth as a result of north‐south littoral drift accompanied by the deposit of aeolian sand. This led to the lake level rising rapidly. Consequently, Losa was abandoned in the 3rd century A.D. and ruins of its temple (at 17 m above msl) were submerged in the 6th century. Further oscillations of the lake level probably correspond to water table fluctuations before it became stable at around 1000 A.D. The highest lake level (23.35 m) was reached during the 18th century as a consequence of modern dune formation, and thus was artificially reduced to 21 m in 1840 by construction of an overflow channel. © 2008 Wiley Periodicals, Inc.  相似文献   
184.
Forested peatlands are widespread in boreal regions of Canada, and these ecosystems, which are major terrestrial carbon sinks, are undergoing significant transformations linked to climate change, fires and human activities. This study targets millennial‐scale vegetation dynamics and related hydrological variability in forested peatlands of the Clay Belt south of James Bay, eastern Canada, using palaeoecological data. Changes in peatland vegetation communities were reconstructed using plant macrofossil analyses, and variations in water‐table depths were inferred using testate amoeba analyses. High‐resolution analyses of macroscopic charcoal >0.5 mm were used to reconstruct local fire history. Our data showed two successional pathways towards the development of present‐day forested peatlands influenced by autogenic processes such as vertical peat growth and related drying, and allogenic factors such as the occurrence of local fires. The oldest documented peatland initiated in a wet rich fen around 8000 cal. a BP shortly after land emergence and transformed into a drier forested bog rapidly after peat inception that persisted over millennia. In the second site, peat started to accumulate from ~5200 cal. a BP over a mesic coniferous forest that shifted into a wet forested peatland following a fire that partially consumed the organic layer ~4600 cal. a BP. The charcoal records show that fires rarely occurred in these peatlands, but they have favoured the process of forest paludification and influenced successional trajectories over millennia. The macrofossil data suggest that Picea mariana (black spruce) persisted on the peatlands throughout their development, although there were periods of more open canopy due to local fires in some cases. This study brings new understanding on the natural variability of boreal forested peatlands which may help predict their response to future changes in climate, fire regimes and anthropogenic disturbances.  相似文献   
185.
High concentrations of calcite fossil granules produced by earthworms (ECG) have been identified in most of the stratigraphical units along the loess‐palaeosol reference sequence of Nussloch (Germany). They are particularly abundant in interstadial brown soils and in tundra gley horizons, the latter reflecting short‐term phases of aggradation then degradation of permafrost. These granules are characterized by a radial crystalline structure produced in the earthworms by specific bio‐mineralization processes. In our study, we used this biological indicator combined with 14C and OSL dating, and sedimentological parameters to characterize millennial‐time scale climatic variations recorded in loess sequences. The approach is based on high‐resolution counts of ECG throughout a 17‐m‐thick loess sequence (332 samples). Strong increases in granule and mollusc concentrations suggest warmer climate conditions during palaeosol formation phases, associated with increasing biodiversity, biological activity and vegetation cover. Decreased granule concentrations occur within primary loess deposits, indicating a strong correlation with palaeoenvironmental conditions and demonstrating the reliability of ECG concentration variations as a new palaeoenvironmental proxy. Finally, this pattern is also recorded in loess sequences located about 600 km westward in northern France demonstrating the large‐scale validity of this new palaeoclimatic proxy.  相似文献   
186.
187.
The South Tien Shan (STS) belt results from the last collision event in the western Central Asian Orogenic Belt (CAOB). Understanding its formation is of prime importance in the general framework of the CAOB. The Atbashi Range preserves high‐P (HP) rocks along the STS suture, but still, its global metamorphic evolution remains poorly constrained. Several HP units have been identified: (a) a HP tectonic mélange including boudins of mafic eclogites in a sedimentary matrix, (b) a large (>100 km long) high‐P metasedimentary unit (HPMU) and (c) a lower blueschist facies accretionary prism. Raman Spectroscopy on carbonaceous material combined with phengite and chlorite multiequilibria and isochemical phase diagram modelling indicates that the HPMU recorded homogeneous P–T conditions of 23–25 kbar and 560–570°C along the whole unit. 40Ar/39Ar dating on phengite from the HPMU ranges between 328 and 319 Ma at regional scale. These ages are interpreted as (re‐) crystallization ages of phengite during Tmax conditions at a pressure range of 20–25 kbar. Thermobarometry on samples from the HP tectonic mélange provides similar metamorphic peak conditions. Thermobarometry on the blueschist to lower greenschist facies accretionary prism indicates that it underwent P–T conditions of 5–6 kbar and 290–340°C, highlighting a 17–20 kbar pressure gap between the HPMU‐tectonic mélange units and the accretionary prism. Comparison with available geochronological data suggests a very short time span between the prograde path (340 Ma), HP metamorphic peak (330 Ma), the Tmax (328–319 Ma) and the final exhumation of the HPMU (303–295 Ma). Extrusion of the HPMU, accommodated by a basal thrust and an upper detachment, was driven by buoyant forces from 70–75 km up to 60 km depth, which directly followed continental subduction and detachment of the HPMU. At crustal depths, extrusion was controlled by collisional tectonics up to shallow levels. Lithological homogeneity of the HPMU and its continental‐derived character from the North Tien Shan suggest this unit corresponds to the hyper‐extended continental margin of the Kazakh continent, subducted southward below the north continental active margin of the Tarim craton. Integration of the available geological data allows us to propose a general geodynamic scenario for Tien Shan during the Carboniferous with a combination of (a) N‐dipping subduction below the Kazakh margin of Middle Tien Shan until 390–340 Ma and (b) S‐dipping subduction of remaining Turkestan marginal basins between 340 and 320 Ma.  相似文献   
188.
This study describes normal fault zones formed in foreland arkosic turbidites (the Grès d'Annot Formation, SW French Alps) under deep diagenesis conditions (~200 °C) and highlights the occurrence of two markedly different fault‐rock types: (1) the foliated fault rocks of the Moutière‐Restefond area; and (2) the dilatant fault rocks of the Estrop area. The deformation of (1) is dominated by intra‐ and transgranular fracturing, pressure solution of quartz and feldspar grains and syn‐kinematic phyllosilicate precipitation resulting from feldspar alteration. The combination of these mechanisms results in a strongly anisotropic strain with intense shortening normal to the foliation (pressure solution) and extension parallel to the foliation (quartz‐ and calcite‐sealed extension veins). This deformation implies local mass transfer that may be achieved without (or with limited) volume change. The deformation of (2) is expressed as dilatant quartz‐sealed veins and breccia textures in which the main mechanisms are transgranular fracturing and quartz precipitation. Type (2) implies fault volume increase, isotropy of deformation and mass transfer at distances larger than in type (1). This study discusses the origins of (1) and (2) and shows that the permeability of (1) is anisotropic, with higher values than the host rocks parallel to the Y main deformation axis (i.e. perpendicular to the slip vector), whereas the permeability of (2) is isotropic and equivalent to that of the host rocks.  相似文献   
189.
Pressure–Temperature–time (P–Tt) estimates of the syn‐kinematic strain at the peak‐pressure conditions reached during shallow underthrusting of the Briançonnais Zone in the Alpine subduction zone was made by thermodynamic modelling and 40Ar/39Ar dating in the Plan‐de‐Phasy unit (SE of the Pelvoux Massif, Western Alps). The dated phengite minerals crystallized syn‐kinematically in a shear zone indicating top‐to‐the‐N motion. By combining X‐ray mapping with multi‐equilibrium calculations, we estimate the phengite crystallization conditions at 270 ± 50 °C and 8.1 ± 2 kbar at an age of 45.9 ± 1.1 Ma. Combining this P–Tt estimate with data from the literature allows us to constrain the timing and geometry of Alpine continental subduction. We propose that the Briançonnais units were scalped on top of the slab during ongoing continental subduction and exhumed continuously until collision.  相似文献   
190.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号