首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   684篇
  免费   81篇
  国内免费   46篇
测绘学   50篇
大气科学   149篇
地球物理   255篇
地质学   171篇
海洋学   35篇
综合类   30篇
自然地理   121篇
  2024年   1篇
  2023年   8篇
  2022年   12篇
  2021年   16篇
  2020年   19篇
  2019年   14篇
  2018年   24篇
  2017年   25篇
  2016年   17篇
  2015年   30篇
  2014年   33篇
  2013年   44篇
  2012年   15篇
  2011年   23篇
  2010年   25篇
  2009年   40篇
  2008年   55篇
  2007年   61篇
  2006年   38篇
  2005年   34篇
  2004年   23篇
  2003年   32篇
  2002年   26篇
  2001年   27篇
  2000年   18篇
  1999年   24篇
  1998年   27篇
  1997年   17篇
  1996年   12篇
  1995年   12篇
  1994年   16篇
  1993年   11篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   1篇
  1985年   3篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有811条查询结果,搜索用时 15 毫秒
1.
Weather routing methods are essential for planning routes for commercial shipping and recreational craft. This paper provides a methodology for quantifying the significance of numerical error and performance model uncertainty on the predictions returned from a weather routing algorithm. The numerical error of the routing algorithm is estimated by solving the optimum path over different discretizations of the environment. The uncertainty associated with the performance model is linearly varied in order to quantify its significance. The methodology is applied to a sailing craft routing problem: the prediction of the voyaging time for an ethnographic voyaging canoe across long distance voyages in Polynesia. We find that the average numerical error is an order of magnitude smaller than the performance model uncertainty. These results illustrate the significance of considering the influence of numerical error and performance uncertainty when performing a weather routing study.  相似文献   
2.
Subsurface deformation is a driver for river path selection when deformation rates become comparable to the autogenic mobility rate of rivers. Here we combine geomorphology, soil and sediment facies analyses, and geophysical data of the Late Quaternary sediments of the central Garo-Rajmahal Gap in Northwest Bengal to link subsurface deformation with surface processes. We show variable sedimentation characteristics, from slow rates (<0.8 mm/year) in the Tista megafan at the foot of the Himalaya to nondeposition at the exposed surface of the Barind Tract to the south, enabling the development of mature soils. Combined subsidence in the Tista fan and uplift of the Barind Tract are consistent with a N-S flexural response of the Indian plate to loading of the Himalaya Mountains given a low value of elastic thickness (15–25 km). Provenance analysis based on bulk strontium concentration suggests a dispersal of sediment consistent with this flexural deformation—in particular the abandonment of the Barind Tract by a Pleistocene Brahmaputra River and the current extents of the Tista megafan lobes. Overall, these results highlight the control by deeply rooted deformation patterns on the routing of sediment by large rivers in foreland settings.  相似文献   
3.
准确判断重大自然灾害发生趋势对于防灾减灾意义重大.基于时间对称性理论,本文构建“可公度降噪—对称性趋势判断—信息结构系稳定性检验”研究模式,判断了淮河流域(HRB)洪涝灾害发生趋势.结果表明:(1)通过可公度降噪处理去除了噪声元素,提高了预测的精确性;(2)运用三元可公度、蝴蝶结构图、信息结构系等方法判断,2019年HRB发生洪涝灾害的信号较强,该年发生洪涝灾害的随机性概率为66.7%,不漏报置信水平为57.1%;(3)通过洪涝灾害与太阳黑子活动的相关性分析可知,HRB在太阳黑子活动谷年附近易发生洪涝灾害,进一步提高了预测结果的可信度.“可公度降噪—对称性趋势判断—信息结构系稳定性检验”研究模式是对现有时间对称性方法的补充和完善,以期为中国灾害预测起到一定的推动作用.  相似文献   
4.
The loess landform in the Loess Plateau of China is with typical dual structure, namely, the upper smooth positive terrain and the lower cliffy negative terrain (P–N terrain for short). Obvious differences in their morphological feature, geomorphological mechanism, and hydrological process could be found in the both areas. Based on the differences, a flow‐routing algorithm that separately addresses the dual‐structure terrain would be necessary to encompass this spatial variation in their hydrological behaviour. This paper proposes a mixed flow‐routing algorithm to address aforementioned problems. First, the loess landform surface is divided into P–N terrains based on digital elevation models. Then, specific catchment area is calculated with the new algorithm to simulate the water flows in both positive and negative terrain areas. The mixed algorithm consists of the multiple flow‐routing algorithm (multiple‐flow direction) for positive areas and the D8 algorithm for negative areas, respectively. The approach is validated in two typical geomorphologic areas with low hills and dense gullies in the northern Shaanxi Loess Plateau. Four indices are used to examine the results, which show that the new algorithm is more suitable for loess terrain in simulating the spatial distribution of water accumulation, as well as in modeling the flow characteristics of the true surface by considering the morphological structures of the terrain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In Pasternack et al. ( 2018 ), a new, scale‐independent, hierarchical river classification was developed that uses five landform types to map the domains of a single fluvial process – flow convergence routing – at each of three–five spatial scales. Given those methods, this study investigated the details of how flow convergence routing organizes nested landform sequences. The method involved analyzing landform abundance, sequencing, and hierarchical nesting along the 35 km gravel/cobble lower Yuba River in California. Independent testing of flow convergence routing found that hydraulic patterns at every flow matched the essential predictions from classification, substantiating the process–morphology link. River width and bed elevation sequences exhibit large, nonrandom, and linked oscillations structured to preferentially yield wide bars and constricted pools at base flow and bankfull flow. At a flow of 8.44 times bankfull, there is still an abundance of wide bar and constricted pool landforms, but larger topographic drivers also yield an abundance of nozzle and oversized landforms. The nested structure of flow convergence routing landforms reveals that base flow and bankfull landforms are nested together within specific floodprone valley landform types, and these landform types control channel morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in‐channel, bankfull, and/or small flood flows. Such flows may initiate sediment transport, but they are too small to control landform organization in a gravel/cobble river with topographic complexity. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
6.
The role of hummocky terrain in governing runoff routing and focussing groundwater recharge in the Northern Prairies of North America is widely recognised. However, most hydrological studies in the region have not effectively utilised information on the surficial geology and associated landforms in large-scale hydrological characterization. The present study uses an automated digital elevation model (DEM) analysis of a 6500-km2 area in the Northern Prairies to quantify hydrologically relevant terrain parameters for the common types of terrains in the prairies with different surficial deposits widespread in the prairies, namely, moraines and glaciolacustrine deposits. Runoff retention (and storage) capacity within depressions varies greatly between different surficial deposits and is comparable in magnitude with a typical amount of seasonal snowmelt runoff generation. The terrain constraint on potential runoff retention varies from a few millimetres in areas classified as moraine to tens of millimetres in areas classified as stagnant ice moraine deposits. Fluted moraine and glaciolacustrine deposits have intermediate storage capacity values. The study also identified the probability density function describing a number of immediate upstream neighbours for each depression in a fill-and-spill network. A relationship between depression parameters and surficial deposits, as well as identified depression network structure, allows parametrisation of hydrologic models outside of the high-resolution DEM coverage, which can still account for terrain variation in the Prairies.  相似文献   
7.
《Sedimentology》2018,65(4):1378-1389
Models relating sediment supply to catchment properties are important in order to use the geological record to deduce landscape evolution and interplay between tectonics and climate. Water discharge (Q w) is an important factor in the widely used ‘BQART ’ model, which relates sediment load to a set of measurable catchment parameters. Although many of the factors in this equation may be independently estimated with some degree of certainty in ancient systems, water discharge (Q w) certainly cannot. An analysis of a world database of modern catchments with 1255 entries shows that the commonly applied equation relating catchment area (A ) to water discharge (Q w = 0·075A0·8) does not predict water discharge from catchment area well in many cases (R 2 = 0·5 and an error spanning about three orders of magnitude). This is because the method does not incorporate the effect of arid and wet climate on river water discharge. The inclusion of climate data into such estimations is an opportunity to refine these estimates, because generalized estimates of palaeoclimate can often be deduced on the basis of sedimentological data such as palaeosol types, mineralogy and palaeohydraulics. This paper investigates how the relationship between catchment area and river discharge varies with four runoff categories (arid, semi‐arid, humid and wet), which are recognizable in the geological record, and modifies the coefficient and exponent of the above‐mentioned equation according to these classes. This modified model yields improved results in relating discharge to catchment area (R 2 = 0·95 and error spanning one order of magnitude) when core, outcrop or regional palaeoclimate reconstruction data are available in non‐arid systems. Arid systems have an inherently variable water discharge, and catchment area is less important as a control due to downstream losses. The model here is sufficient for many geological applications and makes it possible to include variations in catchment humidity in mass‐flux estimates in ancient settings.  相似文献   
8.
The key problem of the energy dissipation scheme of the arch dam body flood discharge and plunge pool below the dam is the stability problem of the plunge pool slab. As the protection structure of the underwater bed, the plunge pool slab bears the continuous impact of high-speed water flow. The hourly average dynamic water pressure on the slab is one of the main loads directly affecting the stability of the slab and is the main factor causing its erosion destruction. After the impoundment of the Xiluodu Hydropower Station, the measuring line of valley width in the plunge pool area has been continuously shrinking. By 2020, the cumulative shrinking value is about 80 ​mm. In light of the general background condition of valley shrinkage, daily inspection, annual detailed inspection, underwater inspection and drainage inspection of the plunge pool found that the plunge pool has experienced different degrees of damage, which greatly influences the long-term safety stability of the plunge pool. In this paper, the prototype observation data of flood discharge is used as the input load of pulsating-pressure, and the stress and displacement distribution of the plunge pool structure under the vibration load of flood discharge is analyzed under the condition that the stress and strain state of the plunge pool is changed under the influence of valley displacement. The results show that the stress, strain, and displacement distribution of the plunge pool are mainly caused by valley deformation, the vibration caused by flood discharge is little in influence, and the impact effect of deep hole flood discharge tongue on the plunge pool slab is weak.  相似文献   
9.
《China Geology》2021,4(2):311-328
In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment, the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess, alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province, and the following results were obtained: (1) The source of Hg in subsurface flow zone is mainly caused by mineral processing activities; (2) the subsurface flow zone in the study area is in alkaline environment, and the residual state, iron and manganese oxidation state, strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment; mercury in river alluvial or diluvial strata is mainly concentrated in silt, tailings and clayey silt soil layer, and mercury has certain stability, and the form of mercury in loess is easier to transform than the other two media; (3) under the flooding condition, most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed, and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection; (4) infiltration at the flood level accelerates the migration of pollutants to the ground; (5) the soil in the undercurrent zone is overloaded and has seriously exceeded the standard. Although the groundwater monitoring results are safe this time, relevant enterprises or departments should continue to pay attention to improving the gold extraction process, especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes, and intensify efforts to solve the geological environmental problems of mines left over from history. At present, the occurrence form of mercury in the undercurrent zone is relatively stable, but the water and soil layers have been polluted. The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links. The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.  相似文献   
10.
In this study, linkage between changing characteristics of precipitation extremes and cloud covers over Central India is explored during summer monsoon period using Satellite data (1998–2015). This is a first attempt to relate the changes in cloud cover to the changes in precipitation extremes. Non-rainy cirrus clouds are excluded from this study. Results show that heavy rainfall (≥ 60 mm/day) is associated with cold cloud tops (Tb≤220 K) while moderate rainfall (<60 mm/day and ≥20 mm) occurs mostly with middle clouds (Tb>220 K and ≤245 K). Low level clouds (Tb> 245 K) are responsible for light rainfall (<20 mm/day). Increases in top 20%, 10%, 5% and 1% heavy precipitation relate well with the increases in very deep convective, deep convective and convective cloud cover. Among these relations, increase in top 5% heavy precipitation relates best with increase in very deep convective cloud cover. Decrease in bottom 30% low precipitation relates with decrease in low level cloud cover. The results reported in this study fit into the framework of how weather extremes respond to climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号