首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
大气科学   1篇
地球物理   1篇
  2010年   2篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
Endemic malaria in most of the hot and humid African climates is the leading cause of morbidity and mortality. In the last twenty or so years the incidence of malaria has been aggravated by the resurgence of highland malaria epidemics which hitherto had been rare. A close association between malaria epidemics and climate variability has been reported but not universally accepted. Similarly, the relationship between climate variability, intensity of disease mortality and morbidity coupled with socio-economic factors has been mooted. Analyses of past climate (temperature and precipitation), hydrological and health data (1961–2001), and socio-economics status of communities from the East African highlands confirm the link between climate variability and the incidence and severity of malaria epidemics. The communities in the highlands that have had less exposure to malaria are more vulnerable than their counterparts in the lowlands due to lack of clinical immunity. However, the vulnerability of human health to climate variability is influenced by the coping and adaptive capacities of an individual or community. Surveys conducted among three communities in the East African highlands reveal that the interplay of poverty and other socio-economic variables have intensified the vulnerability of these communities to the impacts of malaria.  相似文献   
2.
Deeply weathered crystalline rock aquifer systems comprising unconsolidated saprolite and underlying fractured bedrock (saprock) underlie 40% of sub-Saharan Africa. The vulnerability of this aquifer system to contamination, particularly in rapidly urbanizing areas, remains poorly understood. In order to assess solute and viral transport in saprolite derived from Precambrian gneiss, forced-gradient tracer experiments using chloride and Escherichia coli phage ΦX174 were conducted in southeastern Uganda. The bacteriophage tracer was largely unrecovered; adsorption to the weathered crystalline rock matrix is inferred and enabled by the low pH (5.7) of site ground water and the bacteriophage's relatively high isoelectric point (pI = 6.6). Detection of the applied ΦX174 phage in the pumping well discharge at early times during the experiment traces showed, however, that average ground water flow velocities exceed that of the inert solute tracer, chloride. This latter finding is consistent with observations in other hydrogeological environments where statistically extreme sets of microscopic flow velocities are considered to transport low numbers of fecal pathogens and their proxies along a selected range of linked ground water pathways. Application of a radial advection-dispersion model with an exponentially decaying source term to the recovered chloride tracer estimates a dispersivity (α) of 0.8 ± 0.1 m over a distance of 4.15 m. Specific yield (Sy) is estimated to be 0.02 from volume balance calculations based on tracer experiments. As single-site observations, our estimates of saprolite Sy and α are tentative but provide a starting point for assessing the vulnerability of saprolite aquifers in sub-Saharan Africa to contamination and estimating quantitatively the impact of climate and abstraction on ground water storage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号