首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   3篇
地质学   2篇
海洋学   2篇
  2022年   1篇
  2019年   1篇
  2016年   1篇
  2010年   3篇
  2009年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The data are presented on total nitrogen dioxide (NO2) content in the atmosphere from 1979 to 2009 at the high-mountain scientific station located in the unpolluted area in the North Caucasus at the height of 2070 m above the sea level (43.7° N, 42.7° E). The total content of NO2 was measured on the basis of attenuation of direct solar radiation over slope pathways after the sunrise and before the sunset. Characteristics features are analyzed of temporal variability of total NO2 content in the atmosphere related to its diurnal and seasonal variations, 11-year solar activity, volcanic eruptions, quasi-biennial oscillations of tropical circulation, and the El Niño effect.  相似文献   
2.
Doklady Earth Sciences - Estimates of the photochemical ozone generation rate, PQ, and the ozone production efficiency (OPE) per molecule of NOx (=NO + NO2), ∆P, are obtained for the region...  相似文献   
3.
Izvestiya, Atmospheric and Oceanic Physics - Results of long-term measurements and an analysis of the temporal variability of the total contents (TC) of O3 and NO2 at the Kislovodsk High-Altitude...  相似文献   
4.
The comparison is represented of the results of surface ozone concentration measurements in two megalopolises, Moscow and Kiev. A temporal course of ozone concentration and temperature in both cities is close by the shape and is typical of medium-polluted plain stations. In both megalopolises, two maxima are observed within the seasonal ozone concentration variability, in spring and summer, and during the day, a usual ozone concentration maximum (approximately in 2–3 hours after the local noon) and the night one being typical of big cities. An average ozone concentration and an average temperature in corresponding periods are higher in Kiev than in Moscow. Evidently, the summer maximum is associated with photochemical ozone generation processes, and the spring one, with dynamic processes of its transport in the atmosphere. In both megalopolises, the episodes are observed in the warm period under meteorological conditions being unfavorable for the pollutant scattering in the atmosphere when the ozone concentration exceeds the threshold limit value and is dangerous for health. The repeatability of such episodes is the highest one in July-August. In Kiev, such episodes are more frequent than in Moscow. An effective statistical model is constructed for both megalopolises in which the observed ozone concentration is represented in the form of regression function of temperature and relative humidity.  相似文献   
5.
A modern three-dimensional chemistry transport model is adopted for computation of air pollution with photo-oxidants in the Moscow megalopolis and in the several neighboring regions. Along the vertical, the model covers the entire troposphere and has a two-scale horizontal structure, when the resolution of the “inserted” domain is about 13 km. The model computation results are compared with the satellite tropospheric nitrogen dioxide measurements and ground-based measurements of the surface ozone concentration. The analysis results of one of the episodes of enhanced ozone content is considered as an example of a possible use of the model considered as a diagnostic tool for studying issues connected with the air pollution in the region under consideration.  相似文献   
6.
The volatile organic compounds (VOCs) emitted from vegetation into the atmosphere play an important role in atmospheric chemistry and participate in the formation and growth of aerosol particles that affect the atmospheric radiation balance and the earth’s climate. A number of VOCs, such as isoprene, monoterpene, methylvinylketone, and methacrolein, whose surface concentrations were measured between Moscow and Vladivostok in the course of the Transcontinental Observations into the Chemistry of the Atmosphere (TROICA-12) experiment in July–August 2008, are considered. For the first time in Russia, a PTR-MS proton mass-spectrometer was used to measure the VOC concentrations. The continuous series of VOC concentrations in the atmosphere over the Trans-Siberian Railway were obtained, and the characteristic features of their variations were determined. The spatial distribution of the concentrations of biogenic VOC was compared with a map of Russia’s forests. It was found that the maximum concentrations of isoprene between Moscow and Vladivostok correspond to the zones of broad-leaved forests in the Far East and Primorskii Krai, and the maximum concentrations of monoterpene correspond to coniferous forests in Siberia. The obvious correlation between the concentrations of isoprene and the total concentration of methylvinylketone and methacrolein was revealed.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号