首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于CI指数的河南省近40a干旱特征分析   总被引:7,自引:0,他引:7  
基于河南省113个气象站1970~2007实测气象资料,利用气象干旱综合指数对河南省近40 a的干旱特征进行了统计分析.首先计算了历史逐日的CI指数,统计近40 a各站点出现的干旱过程、各时段的干旱事件,在此基础上统计了河南省历年各地区干旱发生的频率、覆盖范围,分析了干旱发生范围的年际变化和不同强度干旱的空间分布特征.分析结果表明:河南省伏旱发生频率最高为63.6%,冬季干旱发生频率最低为48.8%,春旱和秋旱发生频率相近,分别为55.4%和56.9%;全省大范围干旱发生的年份春季和秋季较多分别有9 a,冬季最少只有5 a;春季豫北各等级干旱发生天数均较高,夏季和秋季全省易发生大范围轻旱,重旱发生较少,冬季轻旱和中旱呈显著的纬向分布,南少北多,和降水的分布有较好的负相关性.  相似文献   

2.
1960—2010年中国西南地区区域性气象干旱事件的特征分析   总被引:4,自引:1,他引:3  
利用区域性极端事件客观识别法(Objective Identification Technique for Regional Extreme Events,OITREE)和1960—2010年中国西南地区(四川、云南、贵州省和重庆市)101个站综合气象干旱指数(CI)进行区域性气象干旱事件识别研究,确定了相应的OITREE方法参数组,并识别得出87次中国西南地区区域性气象干旱事件,其中9次达到极端强度,而2009年9月—2010年4月发生的特大干旱是中国西南地区近50年最严重的区域性气象干旱事件。进一步分析表明,中国西南地区区域性气象干旱事件的持续时间一般为10—80 d,最长可达231 d;11—4月是西南地区的旱季。云南和四川南部是西南干旱的频发和强度中心地区;强的(极端及重度)干旱事件可分为5种分布类型,其中南部型出现机会最多。过去50年西南地区区域性气象干旱事件频次显著增多,强度有所增强,其主要原因可能是该地区降水量显著减少所致,而气温升高也起到了推波助澜的作用。  相似文献   

3.
1959-2003年青海省干湿变化分析   总被引:1,自引:0,他引:1  
利用青海省1959-2003年气象资料,计算了修正的Palmer干旱指数,并对其进行了分析。结果表明:在青海省旱涝监测中,PDSI指数反映旱涝程度更为客观;青海省的干旱主要以轻旱为主;夏秋季年际干湿交替较冬春季频繁,变化振幅也较大;秋季青海省干旱化倾向最为严重,冬春季出现轻旱几率最大。另外,春季干旱总面积在减小;夏季轻旱面积增加,而中旱、重旱面积在减小;秋冬季重旱面积在增加。  相似文献   

4.
通过分析桂西北河池市近10a来的气象灾害及其影响分布,并对造成桂西北严重灾害的暴雨洪涝、干旱、冰雹大风、低温冷害损失影响情况进行描述。结果表明:桂西北冰雹大风发生以系统性影响为主,多发生在春季3-4月。由暴雨引发的洪涝灾害相对过去更为频繁。影响严重的暴雨洪涝灾害主要出现在2004年、2008年和2010年,其余年份主要...  相似文献   

5.
针对目前各种干旱指数对干旱事件整体识别能力的局限性,采用一种新的客观识别方法"区域性极端事件客观识别方法(OITREE)"对2009~2010年中国西南地区的秋冬春连旱进行了特征识别。结果表明:(1)此次干旱事件的发生时段为2009年8月25日至2010年4月18日,历时237 d,为近50 a(1961~2010年)综合强度排名第五位的干旱事件,是一次极端干旱事件;(2)此次极端干旱过程最大影响面积为576.82万km2,影响范围涉及到云南全省、四川南部、贵州大部(主要是西部)以及重庆、广西西部,其中,云南、贵州和广西3省交界区干旱最严重,其次为云南的中部和中西部,且云南省不论受旱面积还是受旱强度都是最大的;(3)此次干旱过程有4个明显变化阶段:干旱增强、减弱、再增强、最后解除。第一阶段为2009年8月25日至10月下旬,干旱开始发展并持续增强,影响范围最大可达约370万km2,包括西南、华南、华东、华北及东北南部的小部分地区,持续达2个月,受影响的核心区域除了西南地区以外,还有华北和华南的部分区域;第二阶段为2009年11月初至12月中旬,干旱强度急剧下降,影响范围最小只有约50万km2,主要在西南地区,持续时间只有1个月;第三阶段,2009年12月中旬至2010年3月下旬,旱情再一次增强,干旱面积再次扩大,影响范围最大可达约200万km2,包括西南及西北地区东部,持续时间为3个月,是4个阶段中发展时间最长的,主要受影响的核心区域为西南地区;第四阶段,2010年3月下旬至4月中旬,干旱逐渐缓解,直到过程结束,旱情解除。OITREE方法能从不同层次和方面完整地描述干旱事件的时空变化特点,其判别结果与实际情况基本一致,是一种有效监测干旱的新方法。  相似文献   

6.
近54年柳州干旱的时空特征分析   总被引:1,自引:0,他引:1  
基于1961-2014年逐日降水资料,用降水量距平百分率作为划分干旱的指标,对柳州各季节干旱的时空特征进行了分析,结果为:(1)春季柳州干旱频数的空间分布特征是北部和东部多、其他地区少,夏季西多东少,秋季东北部最多、其他地区接近,冬季西南部多、东北部少、其他地区居中。柳州北部的干旱事件以轻旱、中旱为主,重旱、特旱事件主要发生在在中部和南部地区。(2)从春季到冬季,柳州的干旱发生严重程度有随时间递增的趋势,全市性的中旱、重旱、特旱事件主要发生在秋季和冬季,春季、夏季干旱事件全部为轻旱。(3)近54年柳州全市性干旱总频数的年代际变化呈单峰型,1980年代为波峰,1960年代和2010年代波谷。各季节干旱频数的年代际变化趋势是:春季和秋季1980年代以前干旱发生较多,1990年代以后干旱发生较少,夏季和冬季1980年代以前干旱发生较少,1990年代以后干旱发生较多。  相似文献   

7.
利用1951-2014年全省46个气象站观测资料,建立了吉林省夏旱和春旱对玉米产量影响评估模型.结果表明:吉林省西部地区的夏季干旱与产量之间呈线性关系,气象产量随夏季干旱程度的增加而减少;其他地区夏旱与产量大多呈二次或三次曲线关系,当干旱指数接近或达到中等干旱时,气象产量达到峰值点;春旱不是影响气象产量的主要因素;对于中西部地区,当出现轻旱时,发生在作物需水临界期的干旱年份的减产频率并不高于发生在其他时期;对全省来说,当发生中等程度以上的夏旱时,往往也出现作物需水临界期干旱;发生中等程度夏旱的减产频率,并不比发生轻度夏旱的减产频率高;当发生严重夏旱时,减产频率明显增加.  相似文献   

8.
近30a黔西南州气象干旱特征分析   总被引:1,自引:0,他引:1  
该文利用黔西南州8个气象观测站近30 a(1981—2010年)降水资料、干旱灾情和历年气候整编资料,采用贵州省气象干旱标准中的降水距平百分率分析方法和黔西南州气象干旱与降水量的关系,对黔西南州气象干旱的时间和空间分布特征进行分析,结果表明:黔西南州气象干旱时间分布以秋旱和冬旱最多,春旱次之,夏旱最少,空间分布为北少南多。  相似文献   

9.
2011年中国气候概况   总被引:9,自引:3,他引:6  
2011年,我国气候总体呈现暖干特征。全国年平均气温较常年偏高0.5℃,为1997年以来连续第15个暖年;年降水量556.8mm,较常年偏少9%,为1951年以来最少。年内,我国未出现大范围持续性严重干旱和流域性洪涝灾害,低温冰冻和雪灾、局地强对流、热带气旋灾害较轻。但区域性、阶段性气象灾害频发。华北、黄淮出现近41年来最重秋冬连旱;长江中下游出现近60年来最重冬春连旱,6月旱涝急转,发生暴雨洪涝灾害;西南出现近60年来最重夏秋旱;华西和黄淮秋汛明显;华南南部10月发生较重暴雨灾害;强降水造成北京等大城市发生内涝;夏季南方大部持续高温,多地高温破历史纪录;台风纳沙、梅花影响范围广、致灾程度较重。2011年中国气象灾害为正常偏轻年份,直接经济损失偏多,死亡人数和受灾面积均为1990年以来最少。  相似文献   

10.
基于前期降水指数的气象干旱指标及其应用   总被引:3,自引:0,他引:3  
从气象干旱定义出发,考虑干旱累积效应,借鉴前期降水指数(API)和标准化降水指数(SPI),建立基于标准化前期降水指数(SAPI)的逐日气象干旱指标,并利用1961-2010年全国632个台站的气象资料分析SAPI的适用性特征。结果表明:逐日SAPI曲线呈典型“锯齿型”特征,在降水持续偏少时段平稳下降,克服了基于“等权累加”建立的综合气象干旱指数由于前期降水移出计算窗口而导致的“不合理旱情加剧”问题,能够精细刻画干旱发生、发展和结束过程。SAPI敏感性分析表明,加剧一个干旱等级需要的无雨日数在降水越少的季节(地区)越多, 减缓一个干旱等级需要的日降水量在降水越少的季节(地区)越少。各等级旱日频率总体上与理论频率一致。降水量较少的季节(地区),轻旱、中旱及总旱频率略高于降水量较多的季节(地区),而重旱、特旱频率时空特征相反。1961-2010年全国平均各等级旱日频率均呈下降趋势,其中特旱较为明显,但具有复杂的时空特征:9-11月各等级旱日频率显著增加,其余月份以减少为主;各等级旱日频率总体上呈“西减东增”趋势。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号