首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Real‐time substructuring is a method of dynamically testing a structure without experimentally testing a physical model of the entire system. Instead the structure can be split into two linked parts, the region of particular interest, which is tested experimentally, and the remainder which is tested numerically. A transfer system, such as a hydraulic actuator or a shaking table, is used to impose the displacements at the interface between the two parts on the experimental substructure. The corresponding force imposed by the substructure on the transfer system is fed back to the numerical model. Control of the transfer system is critical to the accuracy of the substructuring process. A study of two controllers used in conjunction with the University of Bristol shaking table is presented here. A proof‐of‐concept one degree‐of‐freedom mass–spring–damper system is substructured such that a portion of the mass forms the experimental substructure and the remainder of the mass plus the spring and the damper is modelled numerically. Firstly a linear controller is designed and tested. Following this an adaptive substructuring strategy is considered, based on the minimal control synthesis algorithm. The deleterious effect of oil‐column resonance common to shaking tables is examined and reduced through the use of filters. The controlled response of the experimental specimen is compared for the two control strategies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Hydraulic actuators are typically used in a real‐time hybrid simulation to impose displacements to a test structure (also known as the experimental substructure). It is imperative that good actuator control is achieved in the real‐time hybrid simulation to minimize actuator delay that leads to incorrect simulation results. The inherent nonlinearity of an actuator as well as any nonlinear response of the experimental substructure can result in an amplitude‐dependent behavior of the servo‐hydraulic system, making it challenging to accurately control the actuator. To achieve improved control of a servo‐hydraulic system with nonlinearities, an adaptive actuator compensation scheme called the adaptive time series (ATS) compensator is developed. The ATS compensator continuously updates the coefficients of the system transfer function during a real‐time hybrid simulation using online real‐time linear regression analysis. Unlike most existing adaptive methods, the system identification procedure of the ATS compensator does not involve user‐defined adaptive gains. Through the online updating of the coefficients of the system transfer function, the ATS compensator can effectively account for the nonlinearity of the combined system, resulting in improved accuracy in actuator control. A comparison of the performance of the ATS compensator with existing linearized compensation methods shows superior results for the ATS compensator for cases involving actuator motions with predefined actuator displacement histories as well as real‐time hybrid simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Shake tables provide a direct means by which to evaluate structural performance under earthquake excitation. Because the entire structure is mounted on the base plate and subjected to the ground motion in real time, dynamic effects and rate‐dependent behavior can be accurately represented. Shake table control is not straightforward as the desired signal is an acceleration record, while most actuators operate in displacement feedback for stability. At the same time, the payload is typically large relative to the capacity of the actuator, leading to pronounced control‐structure interaction. Through this interaction, the dynamics of the specimen influence the dynamics of the shake table, which can be problematic when specimens change behavior because of damage or other nonlinearities. Moreover, shake tables are themselves inherently nonlinear, making it difficult to accurately recreate a desired acceleration record over a broad range of amplitudes and frequencies. A model‐based multi‐metric shake table control strategy is proposed to improve tracking of the desired acceleration of a uniaxial shake table, remaining robust to nonlinearities including changes in specimen condition. The proposed strategy is verified for the shake table testing of both linear and nonlinear structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Real‐time hybrid testing is a method that combines experimental substructure(s) representing component(s) of a structure with a numerical model of the remaining part of the structure. These substructures are combined with the integration algorithm for the test and the servo‐hydraulic actuator to form the real‐time hybrid testing system. The inherent dynamics of the servo‐hydraulic actuator used in real‐time hybrid testing will give rise to a time delay, which may result in a degradation of accuracy of the test, and possibly render the system to become unstable. To acquire a better understanding of the stability of a real‐time hybrid test with actuator delay, a stability analysis procedure for single‐degree‐of‐freedom structures is presented that includes both the actuator delay and an explicit integration algorithm. The actuator delay is modeled by a discrete transfer function and combined with a discrete transfer function representing the integration algorithm to form a closed‐loop transfer function for the real‐time hybrid testing system. The stability of the system is investigated by examining the poles of the closed‐loop transfer function. The effect of actuator delay on the stability of a real‐time hybrid test is shown to be dependent on the structural parameters as well as the form of the integration algorithm. The stability analysis results can have a significant difference compared with the solution from the delay differential equation, thereby illustrating the need to include the integration algorithm in the stability analysis of a real‐time hybrid testing system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Real‐time hybrid simulation provides a viable method to experimentally evaluate the performance of structural systems subjected to earthquakes. The structural system is divided into substructures, where part of the system is modeled by experimental substructures, whereas the remaining part is modeled analytically. The displacements in a real‐time hybrid simulation are imposed by servo‐hydraulic actuators to the experimental substructures. Actuator delay compensation has been shown by numerous researchers to vitally achieve reliable real‐time hybrid simulation results. Several studies have been performed on servo‐hydraulic actuator delay compensation involving single experimental substructure with single actuator. Research on real‐time hybrid simulation involving multiple experimental substructures, however, is limited. The effect of actuator delay during a real‐time hybrid simulation with multiple experimental substructures presents challenges. The restoring forces from experimental substructures may be coupled to two or more degrees of freedom (DOF) of the structural system, and the delay in each actuator must be adequately compensated. This paper first presents a stability analysis of actuator delay for real‐time hybrid simulation of a multiple‐DOF linear elastic structure to illustrate the effect of coupled DOFs on the stability of the simulation. An adaptive compensation method then proposed for the stable and accurate control of multiple actuators for a real‐time hybrid simulation. Real‐time hybrid simulation of a two‐story four‐bay steel moment‐resisting frame with large‐scale magneto‐rheological dampers in passive‐on mode subjected to the design basis earthquake is used to experimentally demonstrate the effectiveness of the compensation method in minimizing actuator delay in multiple experimental substructures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Accurate reproduction of time series with diverse frequency characteristics is a central issue in structural testing. This is true not only for simple experimental tests performed by reaction walls or shaking tables but also for more sophisticated ones, such as hybrid testing. Especially in the latter case, where actual feedback from an ongoing test is used in the calculation of the next excitation value, any possible mismatch may be fatal for both the validity of the test and the safety. The objective of this study is to propose a framework for the adaptive inverse control of shaking tables, which succeeds in this matching to a certain degree. By formulating a critical set of design specifications that correspond to safety, implementation, robustness and ease of use, the conducted research results in a design that is based on a modified version of the filtered‐X algorithm with very competitive features. These are the following: (i) default operation in hard real‐time and acceleration mode; (ii) very low hardware requirements; (iii) effective cancelation of the shaking table's dynamics; and (iv) robustness against specimen dynamics. For its practical evaluation, the method is applied to shaking table waveform replication tests under the installation of an approximately linear specimen of sufficiently high mass and complex geometry. The results are promising and suggest further research toward this field, especially in conjunction with hybrid testing, as the method retains certain global applicability attributes and it can be easily extended to other transfer systems, apart from shaking tables. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a study of the use of servo‐hydraulic systems in the implementation of real‐time large‐scale structural testing methods in force control such as effective force testing (EFT) and in displacement control such as real‐time pseudodynamic testing (RPsD). Mathematical models for both types of control systems are presented and used to investigate the influences of servo‐systems on the overall system performance. Parameters investigated include the overall system dynamics, nonlinearities of servo‐systems, actuator damping, system mass including piston mass, and system response delay. Results of both numerical simulations and experiments showed that many of the influences of the servo‐hydraulic system that significantly affect the real‐time dynamic tests can be properly compensated through control schemes identified in this paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
振动台控制系统设计时对物理系统进行了两个基本假设:伺服阀线性、台面和负载刚性。这样得到的控制系统频带较窄、时滞大,还有可能出现控制系统不稳定。本文通过系统建模,主要分析了伺服阀对振动台控制性能的影响:伺服阀频率特性限制了其控制精度。设计了前馈补偿环节、控制系统参数自整定算法修正系统控制性能,实例仿真结果表明:修正后的算法扩宽了系统频带,提高了地震记录的再现精度。  相似文献   

9.
Conventional shake tables employ linear controllers such as proportional‐integral‐derivative or loop shaping to regulate the movement. However, it is difficult to tune a linear controller to achieve accurate and robust tracking of different reference signals under payloads. The challenges are mainly due to the nonlinearity in hydraulic actuator dynamics and specimen behavior. Moreover, tracking a high‐frequency reference signal using a linear controller tends to cause actuator saturation and instability. In this paper, a hierarchical control strategy is proposed to develop a high‐performance shake table. A unidirectional shake table is constructed at the University of British Columbia to implement and evaluate the proposed control framework, which consists of a high‐level controller and one or multiple low‐level controller(s). The high‐level controller utilizes the sliding mode control (SMC) technique to provide robustness to compensate for model nonlinearity and uncertainties experienced in experimental tests. The performance of the proposed controller is compared with a state‐of‐the‐art loop‐shaping displacement‐based controller. The experimental results show that the proposed hierarchical shake table control system with SMC can provide superior displacement, velocity and acceleration tracking performance and improved robustness against modeling uncertainty and nonlinearities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The paper deals with the proposal and the experimental validation of a novel dissipative bracing system for the seismic protection of structures; compared with other similar systems, it is characterized by smaller size and weight, which makes it easier to move and to install, as well as particularly suitable to be inserted in light‐framed structures (e.g. steel structures of industrial plants). The proposed system consists of an articulated quadrilateral with steel dissipaters inserted, to be connected by tendons to frame joints; the prototypes have been designed and realized for the seismic protection of a two‐storey, large‐scale, steel frame, specially designed for shaking‐table tests. The paper, after an illustration of the system, and of its design and behaviour, presents the shaking‐table tests carried out. The experimental results have fully validated the proposed system, showing its good performance in controlling the seismic response of framed structures. A numerical non‐linear model, set up and validated on the basis of the physical tests, has been used to help interpreting the experimental results, but also to perform parametrical studies for investigating the influence of the design parameters on the performance of the control system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
振动台实验方法是目前抗震研究中的重要手段之一。作者在碎石桩加固液化地基效果的试验研究中,利用从美国MTS公司引进的电液伺服加载试验系统,建成了一个简易单向专用振动台。主要介绍在振动台设计方面遇到的技术难题及其解决途径。主要包括振动台基础、台面和作动器连接部件、台面支撑系统和侧面导向系统材料的正确选择、设计和制作等。文中所采用的技术措施对试验成功起到了保障作用,研制出的振动台试验系统还可以应用于其它岩土地震问题的试验研究。  相似文献   

12.
When subjected to long‐period ground motions, high‐rise buildings' upper floors undergo large responses. Furniture and nonstructural components are susceptible to significant damage in such events. This paper proposes a full‐scale substructure shaking table test to reproduce large floor responses of high‐rise buildings. The response at the top floor of a virtual 30‐story building model subjected to a synthesized long‐period ground motion is taken as a target wave for reproduction. Since a shaking table has difficulties in directly reproducing such large responses due to various capacity limitations, a rubber‐and‐mass system is proposed to amplify the table motion. To achieve an accurate reproduction of the floor responses, a control algorithm called the open‐loop inverse dynamics compensation via simulation (IDCS) algorithm is used to generate a special input wave for the shaking table. To implement the IDCS algorithm, the model matching method and the H method are adopted to construct the controller. A numerical example is presented to illustrate the open‐loop IDCS algorithm and compare the performance of different methods of controller design. A series of full‐scale substructure shaking table tests are conducted in E‐Defense to verify the effectiveness of the proposed method and examine the seismic behavior of furniture. The test results demonstrate that the rubber‐and‐mass system is capable of amplifying the table motion by a factor of about 3.5 for the maximum velocity and displacement, and the substructure shaking table test can reproduce the large floor responses for a few minutes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The time delay resulting from the servo hydraulic systems can potentially destabilize the real‐time dynamic hybrid testing (RTDHT) systems. In this paper, the discrete‐time root locus technique is adopted to investigate the delay‐dependent stability performance of MDOF RTDHT systems. Stability analysis of an idealized two‐story shear frame with two DOFs is first performed to illustrate the proposed method. The delay‐dependent stability condition is presented for various structural properties, time delay, and integration time steps. Effects of delay compensation methods on stability are also investigated. Then, the proposed method is applied to analyze the delay‐dependent stability of a single shaking table RTDHT system with an 18‐DOF finite element numerical substructure, and corresponding RTDHTs are carried out to verify the theoretical results. Furthermore, the stability behavior of a finite element RTDHT system with two physical substructures, loaded by twin shaking tables, is theoretically and experimentally investigated. All experimental results convincingly demonstrate that the delay‐dependent stability analysis on the basis of the discrete‐time root locus technique is feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Pounding between adjacent superstructures has been a major cause of highway bridge damage in the past several earthquakes. This paper presents an experimental and analytical study on pounding reduction of highway bridges subjected to earthquake ground motions by using magnetorheological (MR) dampers. An analytical model, which incorporates structural pounding and MR dampers, is developed. A series of shaking table tests on a 1:20 scaled base‐isolated bridge model are performed to investigate the effects of pounding between adjacent superstructures on the dynamics of the structures. Based on the test results, the parameters of the linear and the nonlinear viscoelastic impact models are identified. Performance of the semiactive system for reducing structural pounding is also investigated experimentally, in which the MR dampers are used in conjunction with the proposed control strategy, to verify the effectiveness of the MR dampers. Structural responses are also simulated by using the established analytical model and compared with the shaking table test results. The results show that pounding between adjacent superstructures of the highway bridge significantly increases the structural acceleration responses. For the base‐isolated bridge model considered here, the semiactive control system with MR dampers effectively precludes pounding. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents the implementation details of a real‐time pseudodynamic test system that adopts an implicit time integration scheme. The basic configuration of the system is presented. Physical tests were conducted to evaluate the performance of the system and validate a theoretical system model that incorporates the dynamics and nonlinearity of a test structure and servo‐hydraulic actuators, control algorithm, actuator delay compensation methods, and the flexibility of an actuator reaction system. The robustness and accuracy of the computational scheme under displacement control errors and severe structural softening are examined with numerical simulations using the model. Different delay compensation schemes have been implemented and compared. One of the schemes also compensates for the deformation of an actuator reaction system. It has been shown that the test method is able to attain a good performance in terms of numerical stability and accuracy. However, it has been shown that test results obtained with this method can underestimate the inelastic displacement drift when severe strain softening develops in a test structure. This can be attributed to the fact that the numerical damping effect introduced by convergence errors becomes more significant as a structure softens. In a real‐time test, a significant portion of the convergence errors is caused by the time delay in actuator response. Hence, a softening structure demands higher precision in displacement control. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A seismic shaking‐table test performed on a one‐storey steel frame with an 8 ton RC floor slab was reproduced on a similar specimen by means of the pseudo‐dynamic (PsD) method. A satisfactory agreement of the results could only be achieved after recalibration of the theoretical mass in the PsD equation and proper inclusion in the PsD test input of the horizontal and pitching accelerations measured on the table. In the shaking‐table test, the spurious pitching motion produced a significant increase in the apparent damping that could be estimated as a function of the pitching dynamic flexibility of the system. Dynamic and PsD snap‐back tests were also performed to provide an additional check of the reliability of the PsD method. The spurious pitching motion of the shaking table should always be measured during the tests and reported as a mean to increase the reliability and usefulness of the results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Real‐time hybrid simulation combines experimental testing of physical substructure(s) and numerical simulation of analytical substructure(s), and thus enables the complete structural system to be considered during an experiment. Servo‐hydraulic actuators are typically used to apply the command displacements to the physical substructure(s). Inaccuracy and instability can occur during a real‐time hybrid simulation if the actuator delay due to servo‐hydraulic dynamics is not properly compensated. Inverse compensation is a means to negate actuator delay due to inherent servo‐hydraulic actuator dynamics during a real‐time hybrid simulation. The success of inverse compensation requires the use of a known accurate value for the actuator delay. The actual actuator delay however may not be known before the simulation. An estimation based on previous experience has to be used, possibly leading to inaccurate experimental results. This paper presents a dual compensation scheme to improve the performance of the inverse compensation method when an inaccurately estimated actuator delay is used in the method. The dual compensation scheme modifies the predicted displacement from the inverse compensation procedure using the actuator tracking error. Frequency response analysis shows that the dual compensation scheme enables the inverse compensation method to compensate for actuator delay over a range of frequencies when an inaccurately estimated actuator delay is utilized. Real‐time hybrid simulations of a single‐degree‐of‐freedom system with an elastomeric damper are conducted to experimentally demonstrate the effectiveness of the dual compensation scheme. Exceptional experimental results are shown to be achieved using the dual compensation scheme without the knowledge of the actual actuator delay a priori. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Sefid‐rud concrete buttress dam with a height of 106 m was damaged during the devastating 1990 Manjil earthquake. The dam was repaired and strengthened using epoxy grouting of cracks and the installation of post‐tensioned anchors. In a previous study, nonlinear seismic response of the highest monolith with empty reservoir was investigated experimentally through model testing. A geometric‐scaled model of 1:30 was tested on a shaking table to study dynamic cracking of the model. As a result of the similarity between model and prototype cracking pattern, the model was retrofitted according to prototype retrofitting plan after the Manjil earthquake and re‐tested on shaking table to estimate the current safety of the prototype. Experimental test results showed that the post‐tensioning resulted in a significant decrease in dynamic responses in terms of crest displacement and measured strains of the retrofitted model in comparison with its corresponding responses at the first test. No cracking was observed in the retrofitted model when the base motion peak acceleration exceeded a value that was 22% higher than the one caused cracking in the first model. This can be interpreted as the efficiency of prototype post‐tensioning system in evaluating the seismic safety of Sefid‐rud dam. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
地震模拟振动台控制系统的发展   总被引:4,自引:1,他引:3  
地震模拟振动台作为结构抗震研究重要的试验设备之一,从20世纪60年代至今,经历了从线性到非线性、时不变到时变、模拟控制到数字控制、位移控制到加速度高级算法控制的发展过程.本文从建模方法、参数识别和控制算法三个方面回顾了地震模拟振动台控制系统研究的发展历程与现状,并阐述了地震模拟振动台控制系统的发展趋势,即试件与台面动力耦合模型、高性能参数识别、控制器参数自整定、强非线性高级控制算法、振动台台阵系统控制算法.  相似文献   

20.
A magnetorheological (MR) damper has been manufactured and tested and a non‐linear model is discussed. The parameters for the model are identified from an identification set of experimental data; these parameters are then used to reconstruct the force vs. displacement and the force vs. velocity hysteresis cycles of the MR damper for the hysteretic model. Then experiments are conducted on a three‐storey frame model using impact excitation, which identifies dynamic parameters of the model equipped with and without the MR damper. Natural frequencies, damping ratios and mode shapes, as well as structural properties, such as the mass, stiffness and damping matrices, are obtained. A semi‐active control method such as a variable structure controller is studied. Based on the ‘reaching law’ method, a feedback controller is presented. In order to evaluate the efficiency of the control system and the effect of earthquake ground motions, both numerical analysis and shaking table tests of the model, with and without the MR damper, have been carried out under three different ground motions: El Centro 1940, Taft 1952, and Ninghe 1976 (Tangshan Earthquake in Chinese). It is found from both the numerical analysis and the shaking table tests that the maximum accelerations and relative displacements for all floors are significantly reduced with the MR damper. A reasonable agreement between the results obtained from the numerical analysis and those from the shaking table tests is also observed. On the other hand, tests conducted at different earthquake excitations and various excitation levels demonstrate the ability of the MR damper to surpass the performance of a comparable passive system in a variety of situations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号