首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
无人潜航器是水下智能化作战技术的重要突破口,然而目前其自主能力不足,无法支持水下无人自主作战。针对该问题,提出了一种基于有限状态机和行为树的无人潜航器交战行为分层建模方法,面向无人潜航器打击目标任务,设计行为模型框架与交战行为模型。该模型结合了有限状态机和行为树的优点,具有高解耦性、结构精简、易于修改与复用的特点,能够支撑无人航行器交战行为的定制化开发,并进一步根据任务剖面形成任务清单,支持无人航行器智能化作战。  相似文献   

2.
水下滑翔器浮力驱动机构布局分析   总被引:1,自引:0,他引:1  
水下滑翔器是一种新型海洋测量平台,它采用浮力驱动方式,并依靠调整重心实现姿态控制.文中从研究水下滑翔器纵垂面内滑翔运动的平衡状态入手,通过对将浮力驱动机构布置在滑翔器的艏部和艉部时的平衡状态受力进行对比分析,指出将浮力驱动机构布置在艏部可以有效缩短重心调节重物的移动距离.并分析了两种布局方式的优缺点,为水下滑翔器的结构设计和控制系统设计提供了参考.  相似文献   

3.
分析大深度潜航器水下空间运动特点,建立描述其空间运动的数学模型,并以数学模型为基础利用 MATLAB\Simulink 软件完成潜航器空间运动仿真模型的开发。在搭建的仿真模型基础上,通过数学仿真手段分析了潜航器在螺旋下潜、抛载过渡、定角爬升、稳定至水面航行状态下的水下运动全过程,给出了具有弧形翼板的潜航器外形设计方案的运动能力仿真评估,为后续潜航器运动能力优化设计提供仿真依据。  相似文献   

4.
以微型轴向柱塞泵为核心的高压浮力驱动系统是1 000 m以深水下滑翔器和剖面浮标优先采用的重要动力单元。文中首先介绍了当前国际上水下滑翔器和剖面浮标两型剖面运动平台的浮力驱动系统的种类及应用,然后以1 000 m以深水下滑翔器为例,系统地阐述了其高压浮力驱动系统的工作原理和设计方法,以及绝对排油量测量、吸油口气锁防止和柱塞偶件精密配合等核心问题。设计制作出精密、高效而且可靠的高压浮力驱动系统,可以为我国剖面观测平台的进一步发展起到推进作用。  相似文献   

5.
波浪滑翔器是一种能够完全借助自然能源长周期运行的小型水面无人航行器,具有超强的续航能力和一定的控位能力,能够执行长时间、大范围、持续的海洋环境观测,水面水下目标探测,跨域通信及信息传递等任务。在国家“863 计划”和国家重点研发计划等领域项目的支持下,中国船舶重工集团有限公司第七一〇研究所研制的“海鳐”波浪滑翔器在平台技术及应用研究上均取得了重要的进展,整体技术水平处于国内领先、世界先进,为在我国军事、海洋环境监测、海洋资源开发利用等领域的应用推广奠定了坚实的平台基础。同时,波浪滑翔器仍是一种有限能力的小型无人航行器,在实际应用中还有许多需要完善和提高的地方。介绍了“海鳐”波浪滑翔器的最新研制进展,总结了研制过程中的部分关键技术,并根据波浪滑翔器在实际应用中存在的一些问题对其技术的发展方向进行了初步探讨。  相似文献   

6.
水下滑翔机器人运动机理仿真与实验   总被引:1,自引:0,他引:1  
对水下滑翔机器人SEA-WING的定常滑翔运动和空间定常螺旋回转运动进行机理分析,针对其特定水动力系数进行仿真,得出其运动机理特性.在此基础上,通过湖试实验数据对仿真结果进行验证,认为对于定常滑翔运动,以约36°航迹角滑行可得到最大水平速度;在相同航迹角航行情况下,水平方向速度随净浮力的增大而增大.对于定常回转运动,回转半径由载体的质量、俯仰角、水动力参数、横滚角确定.在质量和俯仰角保持不变条件下,横滚角对回转半径的影响较明显,系统的回转半径可以通过控制横滚角来实现的.  相似文献   

7.
水下滑翔机器人运动分析与载体设计   总被引:4,自引:0,他引:4  
水下滑翔机器人是一种新型水下机器人,具有噪声低、航行距离远、续航时间长、成本低等特点。分析了水下滑翔机器人的驱动机理和运动实现,给出了水下滑翔机器人典型运动的仿真结果,并以正在设计的一水下滑翔机试验样机为研究对象,描述了样机的整体结构布局,详细研究了浮力调节机构、俯仰调节机构和横滚调节机构的实现方法,并就样机中各执行机构的设计实现进行了论述。  相似文献   

8.
针对自主式潜航器航行中自主规避障碍物传统算法存在的障碍物区域探测精度低、障碍物识别不准确、潜航器航路不最优等问题,采用三维成像声呐和深度学习算法开展了自主规避障碍物优化技术研究, 并通过仿真和漳河水库试验测试了本算法的有效性,可有效提高航行器规避障碍物的成功率和精度,以及 AUV 航行路径优化。  相似文献   

9.
温差能驱动的水下滑翔器设计与实验研究   总被引:10,自引:1,他引:10  
论文设计开发了一种新型的温差能驱动的水下滑翔器,并对它做了水域实验研究。文章讨论了温差能驱动的滑翔器运动机理及其在垂直剖面的运动分析,得到稳态运动的参数解。结合能够把水域温差能转变为机械能的热机设计以及滑翔器的主要机械结构和控制硬件系统设计,完成了滑翔器的初步设计与开发。滑翔器在千岛湖进行了水域实验,实验结果表明,此水下滑翔器完全能够利用温差能实现预定的滑翔运动。  相似文献   

10.
重力梯度仪在水下安全航行中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
纪兵  刘敏  吕良  边少锋 《海洋测绘》2010,30(4):23-25
介绍了重力梯度仪的测量原理,提出在潜航器上配备重力梯度仪,利用其对距离变化敏感的特性,通过连续的观测,可以探测出载体有效机动范围内存在的障碍物,并实现避碰,从而保证潜航器在水下的安全航行。  相似文献   

11.
Design and projected performance of a flapping foil AUV   总被引:1,自引:0,他引:1  
The design and construction of a biomimetic flapping foil autonomous underwater vehicle is detailed. The vehicle was designed as a proof of concept for the use of oscillating foils as the sole source of motive power for a cruising and hovering underwater vehicle. Primary vehicle design requirements included scalability and flexibility in terms of the number and placement of foils, so as to maximize experimental functionality. This goal was met by designing an independent self-contained module to house each foil, requiring only direct current power and a connection to the vehicle's Ethernet local area network for operation. The results of tests on the foil modules in the Massachusetts Institute of Technology (MIT) Marine Hydrodynamics Water Tunnel and the MIT Ship Model Testing Tank are both used to demonstrate fundamental properties of flapping foils and to predict the performance of the specific vehicle design based on the limits of the actuators. The maximum speed of the vehicle is estimated based on the limitations of the specific actuator and is shown to be a strong function of the vehicle drag coefficient. When using four foils, the maximum speed increases from 1 m/s with a vehicle C/sub D/ of 1.4 to 2 m/s when C/sub D/=0.1, where C/sub D/ is based on vehicle frontal area. Finally, issues of vehicle control are considered, including the decoupling of speed and pitch control using pitch-biased maneuvering and the tradeoff between actuator bandwidth and authority during both the cruising and hovering operation.  相似文献   

12.
A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider. The simulation results show a good agreement with field trials.  相似文献   

13.
Underwater glider is an autonomous underwater vehicle that glides by controlling their buoyancy and attitude using internal actuators. By changing the vehicle's buoyancy intermittently, vertical motion can be achieved. Characteristics of glider motion include upward and downward movement in a saw tooth pattern, turning and gliding in a vertical spiral motion and gliding without using thrusters or propellers. This paper presents the modelling and identification on net buoyancy, depth and pitching angle of an underwater glider system. A ballast tank subsystem is considered appropriate for the identification process since it is the main parameter for the motion control. By selecting the ballast rate as the input, three aspects of the dynamics of a glider can be observed: buoyancy, depth of the glider and pitching angle. The MATLAB System Identification ToolboxTM is used to obtain a mathematical model of the glider ballast-buoyancy, ballast-depth and ballast-pitching angle conditioning system. The best three parametric estimation models are chosen, and the results of the comparison between simulated and estimated outputs are presented. The information obtained from the modelling and identification approaches are used for USM's Underwater Glider Prototype controller design. The information observed during this procedure are utilised for optimisation, stability, reliability and robustness analysis of the underwater glider.  相似文献   

14.
南海拥有丰富的渔业资源,其中南海中南部大洋性、上升流区域更是具有很大的开发潜力和商业价值.西沙群岛位于南海中部,是我国海南省三沙市的重要组成部分之一.西沙群岛及其附近海域气候条件优越,拥有丰富的海洋渔业、海洋植被和油气矿藏等海洋资源,其中又以渔业资源的开发潜力最大.在南海问题近年来显著升温的背景下,通过推动加大南海特别是西沙海域的渔业资源开发力度,妥善处理南海争议、更好地维护我国南海主权权益,具有重要的现实意义和深远影响.  相似文献   

15.
A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider.The simulation results show a good agreement with field trials.  相似文献   

16.
In this paper, the hydrodynamic characteristic of a synthetic jet steered underwater vehicle is studied. The steering motion studied is the lateral motion and the yaw motion. The lateral motion is induced through the in-phase work of this two actuators and the yaw motion is realized through the out-of-phase work. The vehicle studied is REMUS AUV with synthetic jet actuator mounted inside. The hydrodynamic characteristic of the vehicle under different cruising speed is studied. The driving parameters of the SJ actuator keep invariant in different cases. When the two actuators work in phase, the average steering force is smaller than the thrust of the isolated actuator and keeps nearly invariant under different cruising speed. When the two actuators work out of phase, the average steering moment also keeps invariant with cruising speed. The mathematical model of the additional drag of the vehicle, the thrust of the actuator, the steering force as well as the steering moment is given. The velocity distribution is also given to assistant the analysis in this paper. From the analysis given it can be known the steering method based on SJ is realized through position control other than velocity control.  相似文献   

17.
研究自主水下航行器系统的软变结构控制策略问题。首先分析软变结构控制系统的结构特征,利用双曲正切函数,给出控制受限情形的软变结构控制策略。其次利用Lyapunov稳定性理论,讨论自主水下航行器软变结构控制系统的稳定性,然后构造了基于双曲正切函数的软变结构控制器,给出自主水下航行器软变结构控制的具体算法。基于双曲正切函数的自主水下航行器软变结构控制系统调节精度高,响应速度快,有效地削弱了系统抖振。最后通过一个仿真实验,比较了自主水下航行器垂直深度通道的4种控制策略对系统性能的影响,从而验证了研究方法的有效性。  相似文献   

18.
This paper describes a controlled self-motion study recently carried out using a small autonomous underwater vehicle (AUV) in a controlled environment in which regular and random waves can be generated accurately for various frequencies and heights. In this study, the AUV was one of the Florida Atlantic University's Ocean Explorer series vehicles, and the controlled environment was chosen to be the Maneuvering And Sea-Keeping (MASK) facilities located at the David Taylor Model Basin. During the entire study, 29 sets of experimental motion and wave data were collected under various wave frequencies and heights, vehicle alignment, and operating depths. Due to the wave tank constraint, the vehicle speed was restricted to be less than 1.5 m/s and the wave frequency higher than 0.3 Hz without significantly affecting the self-motion analysis. Time history and power spectral density results suggest that the roll-induced pitching response was considerably larger for the wave frequencies tested, as compared to the pitch-induced rolling response. Standard deviation results reveal that the existing OEX is capable of producing approximately 3° (peak-to-peak) pitch, 0.7° (peak-to-peak) roll, and 0.6° (peak-to-peak) yaw at 2-m depth in the head-sea condition when the encountering wave frequency is close to 0.4 Hz. However, at 1.5-m vehicle depth, significant surges were observed in pitching and rolling motion, suggesting that the OEX is currently unsuitable to maintain accurate depth-following within this range at sea-state 2 or higher. It is hoped that the results presented can provide better insights into how a small AUV with a nonideal body shape reacts to waves of different sea states, and how vehicle self-motion can be streamlined by choosing proper vehicle speed, heading, and depth, given that the wave characteristics are available  相似文献   

19.
Hydrodynamic coefficients strongly affect the dynamic performance of an autonomous underwater vehicle. Although these coefficients are generally obtained experimentally such as through the planar-motion-mechanism (PMM) test, the measured values are not completely reliable because of experimental difficulties and errors involved. Another approach by which these coefficients can be obtained is the observer method, in which a model-based estimation algorithm predicts the coefficients. In this paper, the hydrodynamic coefficients are estimated using two nonlinear observers - a sliding mode observer and an extended Kalman filter. Their performances are evaluated by comparing the estimated coefficients obtained from the two observer methods with the values as determined from the PMM test. By using the estimated coefficients, a sliding mode controller is constructed for the diving and steering maneuver. It is demonstrated that the controller with the estimated values maintains the desired depth and path with sufficient accuracy.  相似文献   

20.
This paper presents an integrated navigation system for underwater vehicles to improve the performance of a conventional inertial acoustic navigation system by introducing range measurement. The integrated navigation system is based on a strapdown inertial navigation system (SDINS) accompanying range sensor, Doppler velocity log (DVL), magnetic compass, and depth sensor. Two measurement models of the range sensor are derived and augmented to the inertial acoustic navigation system, respectively. A multirate extended Kalman filter (EKF) is adopted to propagate the error covariance with the inertial sensors, where the filter updates the measurement errors and the error covariance and corrects the system states when the external measurements are available. This paper demonstrates the improvement on the robustness and convergence of the integrated navigation system with range aiding (RA). This paper used experimental data obtained from a rotating arm test with a fish model to simulate the navigational performance. Strong points of the navigation system are the elimination of initial position errors and the robustness on the dropout of acoustic signals. The convergence speed and conditions of the initial error removal are examined with Monte Carlo simulation. In addition, numerical simulations are conducted with the six-degrees-of-freedom (6-DOF) equations of motion of an autonomous underwater vehicle (AUV) in a boustrophedon survey mode to illustrate the effectiveness of the integrated navigation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号