首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ocean Color and Temperature Scanner (OCTS) aboard the Advanced Earth Observing Satellite (ADEOS) can observe ocean color and sea surface temperature (SST) simultaneously. This paper explains the algorithm for the OCTS SST product in the NASDA OCTS mission. In the development of the latest, third version (V3) algorithm, the OCTS match-up dataset plays an important role, especially when the coefficients required in the MCSST equation are derived and the equation form is adjusted. As a result of the validation using the OCTS match-up dataset, the algorithm has improved the root mean square (rms) error of the OCTS SST up to 0.698°C although some problems remain in the match-up dataset used in the present study.  相似文献   

2.
An algorithm is presented to retrieve the concentrations of chlorophyll a, suspended pariclulate matter and yellow substance from normalized water-leaving radiances of the Ocean Color and Temperature Sensor (OCTS) of the Advanced Earth Observing Satellite (ADEOS). It is based on a neural network (NN) algorithm, which is used for the rapid inversion of a radiative transfer procedure with the goal of retrieving not only the concentrations of chlorophyll a but also the two other components that determine the water-leaving radiance spectrum. The NN algorithm was tested using the NASA's SeaBAM (SeaWiFS Bio-Optical Mini-Workshop) test data set and applied to ADEOS/OCTS data of the Northwest Pacific in the region off Sanriku, Japan. The root-mean-square error between chlorophyll a concentrations derived from the SeaBAM reflectance data and the chlorophyll a measurements is 0.62. The retrieved chlorophyll a concentrations of the OCTS data were compared with the corresponding distribution obtained by the standard OCTS algorithm. The concentrations and distribution patterns from both algorithms match for open ocean areas. Since there are no standard OCTS products available for yellow substance and suspended matter and no in situ measurements available for validation, the result of the retrieval by the NN for these two variables could only be assessed by a general knowledge of their concentrations and distribution patterns. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
An algorithm to estimate primary production by chlorophylla and sea surface temperature from satellite was evaluated with primary production data from the Ocean Color and Temperature Scanner (OCTS) Sanriku field campaign. The algorithm was applied to the data of OCTS on the Advanced Earth Observing Satellite (ADEOS) off Sanriku, North Pacific, on April 26, 1997. The wavelength-, time-, and depth-resolved model reasonably estimated the chlorophyll-specific primary production of each depth and water column integrated primary production. Although the model parameters were adjusted with the photosynthesis-irradiance curves obtained in the region, the resultant primary production was not significantly different from the global model of Antoine and Morel (1996). This is probably because there is considerable variability in the physiological parameters in this limited area, off Sanriku, and in the limited time, spring. Estimated integrated primary production was well correlated with chlorophylla but not with temperature. This indicates that the temperature dependence of the primary production was less than the variability caused by chlorophylla concentration.  相似文献   

4.
Satellite-derived ocean color data of Coastal Zone Color Scanner (CZCS) on board the Nimbus-7 and Ocean Color and Temperature Scanner (OCTS) on board the Advanced Earth Observing Satellite (ADEOS) are jointly used with historical in situ data to examine seasonal and spatial distributions of chlorophyll a (Chl-a) and suspended particulate matter (SPM) concentrations in the East China Sea. Ocean color imagery showed that Chl-a concentrations on the continental shelf were higher than those of the Kuroshio area throughout the year. Satellite-derived Chl-a concentrations are generally in good accordance with historical in situ values during spring through autumn (although no shipboard in situ measurement was conducted at nearshore areas). In contrast, ocean color imagery in winter indicated high Chl-a concentrations (4–10 mg m–3) on the continental shelf where bottom depth was less than 50 m when surface water was turbid (2–72 g m–3 of SPM at surface), while historical in situ values were usually less than 1 mg m–3. This suggests that resuspended bottom sediment due to wind-driven mixing and winter cooling is responsible for the noticeable overestimation of satellite-derived Chl-a concentrations. The algorithm for ocean color needs to be improved urgently for turbid water.  相似文献   

5.
The northward migration of spring bloom was observed in the Sea of Japan from April to May 1997 by the Ocean Color and Temperature Scanner (OCTS) on board the Advanced Earth Observing Satellite (ADEOS). This phenomenon is well simulated with a numerical ecosystem model coupled with a hydrodynamic model. The hydrodynamic model is the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model (MOM). The ecosystem model consists of five components: dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), phytoplankton, zooplankton and detritus. Results of the numerical ecosystem model suggest that the mesoscale development of the spring bloom in the Sea of Japan is related to that of sea water temperature, and that the bloom is limited by the depletion of DIN. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
In-water algorithms for OCTS standard products were developed using in situ data and installed for operationally processing at NASDA/EOC. This paper describes the in-water algorithms Version 1.0 for chlorophylla concentration, pigment concentration, and attenuation coefficient at a wavelength of 490 nm. The selected OCTS standard algorithms (Ver. 1.0) are as follows:   相似文献   

7.
In the previous paper (Toba and Murakami, 1998) we reported on an unusual path of the Kuroshio Current System, which occurred in April 1997 (April 1997 event), using the Ocean Color and Temperature Scanner (OCTS) data of the Advanced Earth Observing Satellite (ADEOS). The April 1997 event was characterized by the flow of the Kuroshio along the western slope (northward) and the eastern slope (southward) of the Izu-Ogasawara Ridge, a very southerly turning point at about 32°N, followed by a straight northward path up to 37°N of the Kuroshio Extension along the eastern flank of the Izu-Ogasawara and the Japan Trenches. Overlaying of depth contours on ADEOS-OCTS chlorophyll-a images at the April 1997 event demonstrates the bottom topography effects on the current paths. A new finding based on TOPEX/Poseidon altimeter data is that the sea-surface gradient across the Kuroshio/Kuroshio Extension diminished greatly in the sea area southeast of the central Japan, as a very temporary phenomenon prior to this event. This temporary diminishing of the upper-ocean current velocity might have caused a stronger bottom effect along the Izu-Ogasawara Ridge, and over the Izu-Ogasawara Trench disclosed a weak background, barotropic trench-flank current pattern, which existed otherwise independently of the Kuroshio Extension. The very southerly path of the Kuroshio Extension from winter 1996 to autumn 1998 corresponded, with a time lag of about 1.5 years, to the previous La Niña tendency with weaker North Equatorial Current. The April 1997 event occurred in accordance with its extreme condition.  相似文献   

8.
Synoptic ship and satellite observations were performed of the Kuroshio warm-core ring (KWCR) 93A and its adjacent waters, off Sanriku, northwestern North Pacific, between early April and late June 1997. The temporal and spatial distribution of chlorophylla (Chl-a) and sea surface temperature in the study area were analyzed using data from ADEOS Ocean Color and Temperature Scanner (OCTS) and NOAA Advanced Very High Resolution Radiometer (AVHRR). The objective of this study was to describe the temporal and spatial variability of the spring bloom and understand its relationship with the changes in the hydrographic structure of these waters in and around KWCR 93A. The maximum value of Chl-a concentration in the ring was less than 1 mg/m3 during April. The spring bloom in the ring occurred early in May and the relatively high maximum (>1.0 mg/m3) continued from early in May to mid-June. In late June, a ship-observed surface Chl-a concentration of less than 0.4 mg/m3 suggests that the spring bloom had already declined in and around KWCR 93A. Double spiral structures of warm and cold streamers appeared from late April to mid-May, which may have an influence on the occurrence of the spring bloom in and around the ring. In this episodic event, the warm streamer can maintain the available potential energy of the ring and the strength of upwelling around the ring. The cold streamer provided water with a high Chl-a concentration to the surface layer of the ring. In order to understand the temporal and spatial variability of Chl-a distribution in the ring, the behavior of the warm and cold streamers needs to be taken into consideration.  相似文献   

9.
A sediment trap experiment was carried out in conjunction with an over flight of Ocean Color Temperature Scanner (OCTS) on board Advanced Earth Observing Satellite (ADEOS) at 40°N, 143°E off Sanriku in April to May 1997. Short term variability of particle fluxes was examined at depths of 450 m and 600 m from April 6 to May 1 with a sampling interval of two days, and at 450 m with one day interval from 2nd to 10th May. Daily averaged mass flux at 450 m and 600 m was 815 mg m−2d−1 and 862 mg m−2d−1, respectively. A sharp increase in mass flux was observed during the period from April 26 to April 29 with the highest mass flux of 8 g m−2d−1. About 85% of the total mass flux for the entire duration (26 days) was collected within these 4 days. Trapped material during the peak flux period was mainly composed of diatoms dominated byThalassiosira spp. and resting spores ofChaetoceros spp. This suggested that the peak flux was the result of (a) diatom bloom(s) in the euphotic column. Current meter records at 420 m showed that on April 26 and 27, the period when the peak flux was observed, the southwestward current had diminished in strength and changed its direction northwestward. Low current speeds appeared to have enhanced trap efficiency to help form the peak flux. A time series of OCTS Intensive-LAC (Local Area Coverage: Region B) images from mid-March to early May was examined todetect phytoplankton bloom(s). In the March 26th Chl image, high concentration region was restricted to the southwest off Cape Erimo, but spread around the warm core ring (WCR) 93A by April 10. East of the WCR93A, high Chl concentration remained steady until May, but to the west of the WCR93A, Chl decreased rapidly before the 19th of April. From this observation we suspect that the peak flux observed at the end of April originated from a bloom, which ceased on the 17th or 18th of April, in the region north of 40°N and west of 143°E. Taking the current meter records into account, the source region for the trapped material is most likely around southwest of the Cape Erimo.  相似文献   

10.
We describe the oceanographic condition as observed by hydrographic data and phytoplankton spring bloom detected by OCTS images off Sanriku, northwestern Pacific, during the spring bloom period in 1997. The relationship between the two is discussed. OCTS images detected the bloom in early April in the coastal area around the Izu ridge north of the Kuroshio and the eastern coastal area of Hokkaido to the Oyashio front. The bloom areas were seen along the offshore Kuroshio Extension from the end of April, in the upstream region of the Oyashio south of the Kurile Islands, except for a part of coastal area from the end of May, and in the Kuroshio warm-core ring 93A (KWCR 93A) from early June. The temperature difference between the surface and subsurface layer is used as a stratification index. This was large in the upstream region of the Oyashio south of the Kurile Islands and KWCR 93A from early June. Previous research has pointed out that the spring bloom usually corresponds to the development of stratification in the water column due to seasonal warming. In addition to that, we suggest that the transportation of water containing a high chlorophylla concentration by advection due to strong currents, like the Kuroshio and the Oyashio, is important for the formation of an area of high chlorophylla concentration. These results indicate that the OCTS images are useful for a knowledge of the distribution and the change of chlorophylla concentration in the northwestern Pacific region.  相似文献   

11.
The light-saturated maximum value (P B max) and initial slope (α) of the photosynthesis-irradiance (P-E) curve were examined in a warm streamer, a cold streamer and a warm core ring off the Sanriku area in the subarctic western North Pacific Ocean during an ADEOS/OCTS Sanriku field campaign in early May 1997. BothP B max and α were within the ranges of temperate populations. A regional difference was apparent inP B max: populations in the warm streamer tended to show higher value ranging between 1.92 and 4.74 mgC (mgChla)−1h−1 than those in the cold streamer and the warm core ring (1.35–2.87 mgC (mgChla)−1h−1). A depth variation was also observed in α in both the warm streamer and the warm core ring: shallow populations tended to have lower α than deep populations. The depth variations in bothP B max and α resulted in a lower light intensity of the light saturation in a deeper population than that of a shallower one. These depth-related variations in the P-E parameters were likely a manifestation of “shade-adaptation” of photosynthesis. Photoinhibition was not observed over in situ surface light intensity varying below ca 1600 μmol photon m−2s−1. Water-column primary productivity was biooptically estimated to be 233 to 949 mgC m−2d−1 using vertical distributions of the P-E parameters, chlorophylla, phytoplankton light absorption and underwater irradiance. Applicability of surface data sets for estimation of water-column productivity is discussed.  相似文献   

12.
While the Advanced Earth Observing Satellite (ADEOS) was operating, the Kuroshio and the Kuroshio Extension, or the Kuroshio Current System, exhibited unusual behavior from the winter of 1996 to the summer of 1997. This behavior of the Kuroshio Current System has been closely studied using a time series of satellite observation images of SST and ocean color obtained by ADEOS-OCTS, reinforced by SST images obtained by NOAA-AVHRR. Our findings include (i) a long lasting, very southerly path of the Kuroshio Extension; (ii) a Kuroshio path very distant from Japan with the following alternating-jet-like north-south flow pattern of the Kuroshio Extension, which occurred twice, once in February and once in April 1997, as independent events and which was observed to be affected by the bottom topography of the Izu-Ogasawara Ridge and Trench, and of the Japan Trench; (iii) cutting off of a cold water mass after the February event; and (iv) the formation of a vortex pair after the April event. A new mechanism is suggested for the formation of the alternating-jet flow pattern: a topographically forced alternating-jet instability (AJI). An SST-Chlorophyll Diagram (T-Chl Diagram) generated using simultaneous data from a single satellite is useful for analyzing the water mass structure of this region, including biological processes.  相似文献   

13.
The Global Imager (GLI) aboard the Advanced Earth Observing Satellite-II (ADEOS-II) made global observations from 2 April 2003 to 24 October 2003. In cooperation with several institutes and scientists, we obtained quality controlled match-ups between GLI products and in-situ data, 116 for chlorophyll-a concentration (CHLA), 249 for normalized water-leaving radiance (nLw) at 443 nm, and 201 for aerosol optical thickness at 865 nm (Tau_865) and Angstrom exponent between 520 and 865 nm (Angstrom). We evaluated the GLI ocean color products and investigated the causes of errors using the match-ups. The median absolute percentage differences (MedPD) between GLI and in-situ data were 14.1–35.7% for nLws at 380–565 nm, 52.5–74.8% nLws at 625–680 nm, 47.6% for Tau_865, 46.2% for Angstrom, and 46.6% for CHLA, values that are comparable to the ocean-color products of other sensors. We found that some errors in GLI products are correlated with observational conditions; nLw values were underestimated when nLw at 680 nm was high, CHLA was underestimated in absorptive aerosol conditions, and Tau_865 was overestimated in sunglint regions. The error correlations indicate that we need to improve the retrievals of the optical properties of absorptive aerosols and seawater and sea surface reflection for further applications, including coastal monitoring and the combined use of products from multiple sensors.  相似文献   

14.
Both historic and currently operational chlorophyll algorithms of the satellite-borne ocean color sensors, such as SeaWiFS, were evaluated for in situ spectral radiation and chlorophyll data in some Case I waters, including the waters in the Indian Ocean sector of the Southern Ocean. Chlorophyll a concentration of the data set (n = 73) ranged from 0.04 to 1.01 mg m–3. The algorithms had higher accuracy for the low- and mid-latitude waters (RMSE: 0.163–0.253), specifically the most recently developed algorithms of OCTS and Sea WiFS showed 0.163 and 0.170 of Root Mean Square Errors, respectively. However, these algorithms had large errors (0.422–0.621) for the Southern Ocean data set and underestimated the surface chlorophyll by more than a factor of 2.6. The absorption coefficients in the blue spectral region retrieved from remote sensing reflectance varied in a nonlinear manner with chlorophyll a concentration, and the value in the Southern Ocean was significantly lower than that in the low- and mid-latitude waters for each chlorophyll a concentration. The underestimation of chlorophyll a concentration in the Southern Ocean with these algorithms was caused by the lower specific absorption coefficient in the region compared with the low- and mid-latitude waters under the same chlorophyll a concentration.  相似文献   

15.
We present calibration and validation results of the OCTS’s ocean color version-3 product, which mainly consists of the chlorophyll-a concentration (Chl-a) and the normalized water-leaving radiance (nLw). First, OCTS was calibrated for the inter-detector sensitivity difference, offset, and absolute sensitivity using external calibration source. It was also vicariously calibrated using in-situ measurements for water (Chl-a andnLw) and atmosphere (optical thickness), which were acquired synchronously with OCTS under cloud-free conditions. Second, the product was validated using selected 17 in-situ Chl-a and 11 in-situnLw measurements. We confirmed that Chl-a was estimated with an accuracy of 68% for Chl-a less than 2 mg/m3, andnLw from 94% (band 2) to 128% (band 4). Geometric accuracy was improved to 1.3 km. Stripes were significantly reduced by modifying the detector normalization factor as a function of input radiance.  相似文献   

16.
汪栋  张杰  范陈清  孟俊敏 《海洋科学》2016,40(4):108-115
基于浮标和步进频率微波辐射计(SFMR,Stepped-Frequency Microwave Radiometer)数据对NASA JPL(Jet Propulsion Laboratory)和RSS(Remote Sensing Systems)公司分别发布的已广泛应用于全球海面风场观测的ASCAT(Advanced SCATterometer)散射计风产品进行了比较和分析。结果表明,两者风速在中低风速(15 m/s)时基本一致;高风速(15 m/s)时RSS风速整体高于JPL风速。通过浮标数据对比,风速15 m/s时两者风速精度一致;风速15 m/s时两者风速RMS相当,但JPL和RSS风速分别低估和高估。利用SFMR数据检验表明RSS风速与SFMR风速一致性更好。两者风向精度在低风速(5 m/s)时较低,但随风速增加而提高并趋于稳定。该研究结果对相关科研人员的ASCAT散射计风产品选择具有重要的指导意义。  相似文献   

17.
This paper first describes the atmospheric correction algorithm for OCTS visible band data used at NASDA/EOC. Sharing a basic structure with Gordon and Wang’s Sea WiFS algorithm, it uses 10 candidate aerosol models including the “Asian dust model” introduced in consideration of the unique feature of aerosols over the east Asian waters. Based on the observations at 670 and 865 nm bands, the algorithm selects a pair of aerosol models that account best for the observed spectral reflectances, and synthesizes the aerosol reflectance used for the atmospheric correction. Two different schemes for determining the value of the parameter for the aerosol model selection are presented and their anticipated estimation error is analyzed in terms of retrieved water reflectance at 443 nm. The results of our numerical simulation show that the standard deviation of the estimation error of the “weighted average” scheme is mostly within the permissible level of ±0.002, reducing the error by 18% on average compared to the “simple average” scheme. The paper further discusses the expected error under the old CZCS-type atmospheric correction, which assumes constant aerosol optical properties throughout the given image. Although our algorithm has a better performance than the CZCS algorithm, further analysis shows that the error induced by the assumption taken in the algorithm that the water-leaving radiance at 670 nm band is negligibly small may be large in high pigment concentration waters, indicating the necessity for future improvements.  相似文献   

18.
In this study, sea surface salinity(SSS) Level 3(L3) daily product derived from soil moisture active passive(SMAP)during the year 2016, was validated and compared with SSS daily products derived from soil Moisture and ocean salinity(SMOS) and in-situ measurements. Generally, the root mean square error(RMSE) of the daily SSS products is larger along the coastal areas and at high latitudes and is smaller in the tropical regions and open oceans. Comparisons between the two types of daily satellite SSS product revealed that the RMSE was higher in the daily SMOS product than in the SMAP, whereas the bias of the daily SMOS was observed to be less than that of the SMAP when compared with Argo floats data. In addition, the latitude-dependent bias and RMSE of the SMAP SSS were found to be primarily influenced by the precipitation and the sea surface temperature(SST). Then, a regression analysis method which has adopted the precipitation and SST data was used to correct the larger bias of the daily SMAP product. It was confirmed that the corrected daily SMAP product could be used for assimilation in high-resolution forecast models, due to the fact that it was demonstrated to be unbiased and much closer to the in-situ measurements than the original uncorrected SMAP product.  相似文献   

19.
The Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) is a five-channel radiometer with wavelength from 0.6 to 12 μm. Daily 0.125° sea surface temperature (SST) data from VIRS were first produced at the National Space Development Agency (NASDA) for comparison with SST from TRMM Microwave Imager (TMI). In order to obtain accurate high spatial resolution SST for the merging of SST from infrared and microwave measurements, new SST retrieval coefficients of the Multichannel SST (MCSST) algorithm were generated using the global matchups from VIRS brightness temperature (BT) and Global Telecommunications System (GTS) SST. Cloud detection was improved and striping noise was eliminated. One-year global VIRS level-1B data were reprocessed using the MCSST algorithm and the advanced cloud/noise treatments. The bias and standard deviation between VIRS split-window SST and in situ SST are 0.10°C and 0.63°C, and for triple-window SST, are 0.06°C and 0.48°C. The results indicate that the reprocessing algorithm is capable of retrieving high quality SST from VIRS data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Data sets of surface wind and wind-stress fields in the North Pacific from September 1996 to June 1997 have been constructed using NASA Scatterometer (NSCAT) data on-board ADEOS to investigate their variability and implications for the wind-driven oceanic circulation. Using a weighting function decreasing with the distance between each grid and data points, and of Gaussian type for time, daily, 10-day and monthly averages are calculated for each 1°×1° grid. Products are validated by comparison with those calculated from in-situ measurement data at oceanic buoys around Japan (JMA) and in the equatorial area (TAO). The RMS differences for wind direction and speed never exceed 20° and 2 ms−1, respectively, for the TAO buyos. This does not hold for data taken by JMA buoys, suggesting that the reliability in the mid-latitudes is not good for time averages shorter than several days. Zonal integration of the Sverdrup transport in a zone of 28°–30°N calculated from the monthly-mean products ranges between 25 and 60×106 m3s−1 (Sv) around its mean of 38 Sv. These are not so different from the Kuroshio transport values calculated from oceanic measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号