首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to deconvolve the ghost response from marine seismic data, an estimate of the ghost operator is required. Typically, this estimate is made using a model of in‐plane propagation, i.e., the ray path at the receiver falls in the vertical plane defined by the source and receiver locations. Unfortunately, this model breaks down when the source is in a crossline position relative to the receiver spread. In this situation, in‐plane signals can only exist in a small region of the signal cone. In this paper, we use Bayes' theory to model the posterior probability distribution functions for the vertical component of the ray vector given the known source–receiver azimuth and the measured inline component of the ray vector. This provides a model for the ghost delay time based on the acquisition geometry and the dip of the wave in the plane of the streamer. The model is fairly robust with regard to the prior assumptions and controlled by a single parameter that is related to the likelihood of in‐plane propagation. The expected values of the resulting distributions are consistent with the deterministic in‐plane model when in‐plane likelihood is high but valid everywhere in the signal cone. Relaxing the in‐plane likelihood to a reasonable degree radically simplifies the shape of the expected‐value surface, lending itself for use in deghosting algorithms. The model can also be extended to other plane‐wave processing problems such as interpolation.  相似文献   

2.
海上倾斜缆采集技术具有多样的陷波特征,通过去鬼波处理可获得宽频数据.针对海水面波浪起伏及缆深误差引起的鬼波延迟时间估计误差以及崎岖海底和目的层深度变化使得鬼波和一次反射波的振幅差异系数随偏移距的变化而难以给定一个固定值的问题,本文推导出频率慢度域中鬼波滤波算子以及自适应迭代反演求解上行波算法,该鬼波滤波算子与不同水平慢度对应的鬼波和一次反射波的振幅差异系数以及鬼波延迟时间有关.并基于计算出的理论下行波与实际下行波之间的平方误差最小理论实现自适应反演迭代最优计算该振幅差异系数和鬼波延迟时间.合成的及某海上采集的倾斜缆数据去鬼波处理结果表明,频率慢度域自适应迭代反演算法能较好地去除海上变深度缆鬼波,能达到拓宽地震记录频带目的.  相似文献   

3.
Single‐component towed‐streamer marine data acquisition records the pressure variations of the upgoing compressional waves followed by the polarity‐reversed pressure variations of downgoing waves, creating sea‐surface ghost events in the data. The sea‐surface ghost for constant‐depth towed‐streamer marine data acquisition is usually characterised by a ghost operator acting on the upgoing waves, which can be formulated as a filtering process in the frequency–wavenumber domain. The deghosting operation, usually via the application of the inverse Wiener filter related to the ghost operator, acts on the signal as well as the noise. The noise power transfer into the deghosted data is proportional to the power spectrum of the inverse Wiener filter and is amplifying the noise strongly at the notch wavenumbers and frequencies of the ghost operator. For variable‐depth streamer acquisition, the sea‐surface ghost cannot be described any longer as a wavenumber–frequency operator but as a linear relationship between the wavenumber–frequency representation of the upgoing waves at the sea surface and the data in the space–frequency domain. In this article, we investigate how the application of the inverse process acts on noise. It turns out that the noise magnification is less severe with variable‐depth streamer data, as opposed to constant depth, and is inversely proportional to the local slant of the streamer. We support this statement via application of the deghosting process to real and numerical random noise. We also propose a more general concept of a wavenumber–frequency ghost power transfer function, applicable for variable‐depth streamer acquisition, and demonstrate that the inverse of the proposed variable‐depth ghost power transfer function can be used to approximately quantify the action of the variable‐depth streamer deghosting process on noise.  相似文献   

4.
Three‐dimensional receiver ghost attenuation (deghosting) of dual‐sensor towed‐streamer data is straightforward, in principle. In its simplest form, it requires applying a three‐dimensional frequency–wavenumber filter to the vertical component of the particle motion data to correct for the amplitude reduction on the vertical component of non‐normal incidence plane waves before combining with the pressure data. More elaborate techniques use three‐dimensional filters to both components before summation, for example, for ghost wavelet dephasing and mitigation of noise of different strengths on the individual components in optimum deghosting. The problem with all these techniques is, of course, that it is usually impossible to transform the data into the crossline wavenumber domain because of aliasing. Hence, usually, a two‐dimensional version of deghosting is applied to the data in the frequency–inline wavenumber domain. We investigate going down the “dimensionality ladder” one more step to a one‐dimensional weighted summation of the records of the collocated sensors to create an approximate deghosting procedure. We specifically consider amplitude‐balancing weights computed via a standard automatic gain control before summation, reminiscent of a diversity stack of the dual‐sensor recordings. This technique is independent of the actual streamer depth and insensitive to variations in the sea‐surface reflection coefficient. The automatic gain control weights serve two purposes: (i) to approximately correct for the geometric amplitude loss of the Z data and (ii) to mitigate noise strength variations on the two components. Here, Z denotes the vertical component of the velocity of particle motion scaled by the seismic impedance of the near‐sensor water volume. The weights are time‐varying and can also be made frequency‐band dependent, adapting better to frequency variations of the noise. The investigated process is a very robust, almost fully hands‐off, approximate three‐dimensional deghosting step for dual‐sensor data, requiring no spatial filtering and no explicit estimates of noise power. We argue that this technique performs well in terms of ghost attenuation (albeit, not exact ghost removal) and balancing the signal‐to‐noise ratio in the output data. For instances where full three‐dimensional receiver deghosting is the final product, the proposed technique is appropriate for efficient quality control of the data acquired and in aiding the parameterisation of the subsequent deghosting processing.  相似文献   

5.
A marine source generates both a direct wavefield and a ghost wavefield. This is caused by the strong surface reflectivity, resulting in a blended source array, the blending process being natural. The two unblended response wavefields correspond to the real source at the actual location below the water level and to the ghost source at the mirrored location above the water level. As a consequence, deghosting becomes deblending (‘echo‐deblending’) and can be carried out with a deblending algorithm. In this paper we present source deghosting by an iterative deblending algorithm that properly includes the angle dependence of the ghost: It represents a closed‐loop, non‐causal solution. The proposed echo‐deblending algorithm is also applied to the detector deghosting problem. The detector cable may be slanted, and shot records may be generated by blended source arrays, the blending being created by simultaneous sources. Similar to surface‐related multiple elimination the method is independent of the complexity of the subsurface; only what happens at and near the surface is relevant. This means that the actual sea state may cause the reflection coefficient to become frequency dependent, and the water velocity may not be constant due to temporal and lateral variations in the pressure, temperature, and salinity. As a consequence, we propose that estimation of the actual ghost model should be part of the echo‐deblending algorithm. This is particularly true for source deghosting, where interaction of the source wavefield with the surface may be far from linear. The echo‐deblending theory also shows how multi‐level source acquisition and multi‐level streamer acquisition can be numerically simulated from standard acquisition data. The simulated multi‐level measurements increase the performance of the echo‐deblending process. The output of the echo‐deblending algorithm on the source side consists of two ghost‐free records: one generated by the real source at the actual location below the water level and one generated by the ghost source at the mirrored location above the water level. If we apply our algorithm at the detector side as well, we end up with four ghost‐free shot records. All these records are input to migration. Finally, we demonstrate that the proposed echo‐deblending algorithm is robust for background noise.  相似文献   

6.
The broadband capabilities of marine, seabed, and land seismic equipment are reviewed with respect to both the source and the receiver sides. In marine acquisition, the main issue at both ends of the spectrum relates to ghosts occurring at the sea surface. Broadband deghosting requires towing at variable depth to introduce notch diversity or using new equipment like multi‐component and/or low‐noise streamers. As a result, a doubling of the bandwidth from about three to six octaves (2.5–200 Hz) has been achieved. Such improvement is not yet observed for seabed surveys in spite of deghosting being a standard process on the receiver side. One issue may be related to the coupling of the particle motion sensor, particularly at high frequencies. For land acquisition, progress came from the vibrators. New shakers and control electronics using broadband sweeps made it possible to add two more octaves to the low‐frequency signal (from 8 to 2 Hz). Whereas conventional 10 Hz geophones are still able to record such low frequencies, 5 Hz high gain geophones or digital accelerometers enhance them to keep the signal above the noise floor. On the high end of the bandwidth, progress is not limited by equipment specifications. Here, the issue is related to a low signal‐to‐noise ratio due to the strong absorption that occurs during signal propagation. To succeed in enlarging the bandwidth, these improved equipment and sweeps must be complemented by a denser spatial sampling of the wavefield by point–source and point–receiver acquisition.  相似文献   

7.
This paper addresses two artefacts inherent to marine towed‐streamer surveys: 1) ghost reflections and 2) too sparse a sampling in the crossline direction. A ghost reflection is generated when an upcoming reflection bounces off the sea surface back into the sensors and can, in principle, be removed by decomposing the measured wavefield into its up‐ and downgoing constituents. This process requires a dense sampling of the wavefield in both directions along and perpendicular to the streamers. A dense sampling in the latter direction is, however, often impossible due to economical and operational constraints. Recent multi‐component streamers have been designed to record the spatial gradients on top of the pressure, which not only benefits the wavefield decomposition but also facilitates a lower‐than‐Nyquist sampling rate of the pressure. In this paper, wavefield reconstruction and deghosting are posed as a joint inverse problem. We present two approaches to establish a system matrix that embeds both a deghosting and an interpolation operator. The first approach is derived with a ghost model, whereas the second approach is derived without a ghost model. The embodiment of a ghost model leads to an even lower sampling rate but relies on a more restrictive assumption on the sea surface.  相似文献   

8.
作为一种特殊的噪声,鬼波对一次波的波形及频带宽度产生极大的影响,鬼波压制是提高海上地震资料分辨率及保真度的重要因素.以格林公式为基础,详细论述了基于格林函数理论的鬼波压制方法,在不需要地下介质信息的条件下,进行地震数据驱动鬼波压制,并根据"Double Dirichlet"(双狄利克雷)边界条件,预测压力波场和垂直速度波场.建立了基于格林函数理论鬼波压制的处理流程,数值模拟和实际资料处理结果表明,基于格林函数理论鬼波压制方法在很好地去除鬼波的同时极大地拓宽了地震资料的频带,尤其提升了低频端能量,有利于后续资料的处理解释.  相似文献   

9.
State‐of‐the‐art 3D seismic acquisition geometries have poor sampling along at least one dimension. This results in coherent migration noise that always contaminates pre‐stack migrated data, including high‐fold surveys, if prior‐to‐migration interpolation was not applied. We present a method for effective noise suppression in migrated gathers, competing with data interpolation before pre‐stack migration. The proposed technique is based on a dip decomposition of common‐offset volumes and a semblance‐type measure computation via offset for all constant‐dip gathers. Thus the processing engages six dimensions: offset, inline, crossline, depth, inline dip, and crossline dip. To reduce computational costs, we apply a two‐pass (4D in each pass) noise suppression: inline processing and then crossline processing (or vice versa). Synthetic and real‐data examples verify that the technique preserves signal amplitudes, including amplitude‐versus‐offset dependence, and that faults are not smeared.  相似文献   

10.
本文发展基于波动方程的上下缆鬼波压制方法,推导了上下缆地震波场频率波数域波动方程延拓合并公式.基于Fourier变换的波场解析延拓确保上下缆资料振幅相位的一致性,消除了长拖缆远偏移距信号的计算误差,同时具有较高的计算效率;上下缆地震波场的波动方程法合并有效解偶鬼波干涉,实现综合利用上下缆地震数据压制鬼波.理论模型数据和实际采集地震数据的测试表明了方法的有效性.  相似文献   

11.
Most seismic processing algorithms generally consider the sea surface as a flat reflector. However, acquisition of marine seismic data often takes place in weather conditions where this approximation is inaccurate. The distortion in the seismic wavelet introduced by the rough sea may influence (for example) deghosting results, as deghosting operators are typically recursive and sensitive to the changes in the seismic signal. In this paper, we study the effect of sea surface roughness on conventional (5–160 Hz) and ultra‐high‐resolution (200–3500 Hz) single‐component towed‐streamer data. To this end, we numerically simulate reflections from a rough sea surface using the Kirchhoff approximation. Our modelling demonstrates that for conventional seismic frequency band sea roughness can distort results of standard one‐dimensional and two‐dimensional deterministic deghosting. To mitigate this effect, we introduce regularisation and optimisation based on the minimum‐energy criterion and show that this improves the processing output significantly. Analysis of ultra‐high‐resolution field data in conjunction with modelling shows that even relatively calm sea state (i.e., 15 cm wave height) introduces significant changes in the seismic signal for ultra‐high‐frequency band. These changes in amplitude and arrival time may degrade the results of deghosting. Using the field dataset, we show how the minimum‐energy optimisation of deghosting parameters improves the processing result.  相似文献   

12.
高分辨率的宽带地震勘探技术是最近几年海上油气地震勘探的热点问题,鬼波压制是其中的核心议题.石油工业界,除了提出各种压制鬼波的采集方式外,资料处理过程中压制鬼波的方法也在不断地推陈出新.源、检鬼波的存在使得反射子波的有效频带变窄,成像分辨率降低,且干扰后续的自由表面多次波压制、FWI等.不同于常规的鬼波压制模型,本文基于编码与解码理论框架,用编码建立起鬼波预测模型,在Bayes反演框架下建立起解码估计一次波、从而压制鬼波的方法.基于此鬼波预测模型及相应反演理论的鬼波压制方法对鬼波的压制更为彻底.理论模型数据与实际资料测试结果验证了本文提出的理论框架和方法技术的有效性与优越性.  相似文献   

13.
In this paper, we propose a novel three‐dimensional receiver deghosting algorithm that is capable of deghosting both horizontal and slanted streamer data in a theoretically consistent manner. Our algorithm honours wave propagation phenomena in a true three‐dimensional sense and frames the three‐dimensional receiver deghosting problem as a Lasso problem. The ultimate goal is to minimise the mismatch between the actual measurements and the simulated wavefield with an L1 constraint applied in the extended Radon space to handle the underdetermined nature of this problem. We successfully demonstrate our algorithm on a modified three‐dimensional EAGE/SEG Overthrust model and a Red Sea marine dataset.  相似文献   

14.
The receiver function method was originally developed to analyse earthquake data recorded by multicomponent (3C) sensors and consists in deconvolving the horizontal component by the vertical component. The deconvolution process removes travel path effects from the source to the base of the target as well as the earthquake source signature. In addition, it provides the possibility of separating the emergent P and PS waves based on adaptive subtraction between recorded components if plane waves of constant ray parameters are considered. The resulting receiver function signal is the local PS wave's impulse response generated at impedance contrasts below the 3C receiver.We propose to adapt this technique to the wide‐angle multi‐component reflection acquisition geometry. We focus on the simplest case of land data reflection acquisition. Our adapted version of the receiver function approach consists in a multi‐step procedure that first removes the P wavefield recorded on the horizontal component and next removes the source signature. The separation step is performed in the τ?p domain while the source designature can be achieved in either the τ?p or the t?x domain. Our technique does not require any a priori knowledge of the subsurface. The resulting receiver function is a pure PS‐wave reflectivity response, which can be used for amplitude versus slowness or offset analysis. Stack of the receiver function leads to a high‐quality S wave image.  相似文献   

15.
海水面的虚反射(鬼波)引起海上拖缆采集数据陷波,导致地震记录频带变窄,而近年发展的变深度缆采集技术,具有多样的陷波特征,通过专门的去虚反射处理方法可获得宽频数据.本文基于已有研究成果,将最小二乘反演迭代压制虚反射算法应用于某海上变深度缆宽频处理.基于频率波数域镜像记录生成方法获得镜像炮集记录,并采用最小二乘解从变深度缆原始和镜像炮集记录中提取上行波.针对镜像炮集记录生成受初始速度模型精度的影响,使得某深度缆接收的上行波和下行波之间的实际延迟时间存在误差,采用最小二乘反演迭代算法最优化计算下行波与上行波之间的平均延迟时间和上行波记录,并采用时空数据窗口滑动克服延迟时间随炮检距和目的层深度变化问题.合成数据及某海上实际变深度缆数据处理测试结果表明,该方法能较好地压制变深度缆由海水面产生的虚反射,能达到拓宽地震记录频带目的.  相似文献   

16.
Currently, the deghosting of towed streamer seismic data assumes a flat sea level and a sea-surface reflection coefficient of ?1; this decreases the precision of deghosting. A new method that considers the rough sea surface is proposed to suppress ghost reflections. The proposed deghosting method obtains the rough sea surface reflection coefficient using Gaussian statistics, and calculates the optimized deghosting operator in the τ/p domain. The proposed method is closer to the actual sea conditions, offers an improved deghosting operator, removes the ghost reflections from marine towed seismic data, widens the bandwidth and restores the low-frequency information, and finally improves the signal-tonoise ratio and resolution of the seismic data.  相似文献   

17.
Four‐dimensional imaging using geophysical data is of increasing interest in the oil and gas industries. While travel‐time and amplitude variations are commonly used to monitor reservoir properties at depth, their interpretation can suffer from a lack of information to decipher the parts played by different parameters. In this context, this study focuses on the slowness and azimuth angle measured at the surface using source and receiver arrays as complementary observables. In the first step, array processing techniques are used to extract both azimuth and incidence angles at the source side (departure angles) and at the receiver side (arrival angles). In the second step, the slowness and angle variations are monitored in a laboratory environment. These new observables are compared with traditional arrival‐time variations when the propagation medium is subject to temperature fluctuations. Finally, field data from a heavy‐oil permanent reservoir monitoring system installed onshore and facing steam injection and temperature variations are investigated. The slowness variations are computed over a period of 152 days. In agreement with Fermat's principle, strong correlations between the slowness and arrival‐time variations are highlighted, as well as good consistency with other techniques and field pressure measurements. Although the temporal variations of slowness and arrival time show the same features, there are still differences that can be considered for further characterization of the physical changes at depth.  相似文献   

18.
Wave field reconstruction – the estimation of a three‐dimensional (3D) wave field representing upgoing, downgoing or the combined total pressure at an arbitrary point within a marine streamer array – is enabled by simultaneous measurements of the crossline and vertical components of particle acceleration in addition to pressure in a multicomponent marine streamer. We examine a repeated sail line of North Sea data acquired by a prototype multicomponent towed‐streamer array for both wave field reconstruction fidelity (or accuracy) and reconstruction repeatability. Data from six cables, finely sampled in‐line but spaced at 75 m crossline, are reconstructed and placed on a rectangular data grid uniformly spaced at 6.25 m in‐line and crossline. Benchmarks are generated using recorded pressure data and compared with wave fields reconstructed from pressure alone, and from combinations of pressure, crossline acceleration and vertical acceleration. We find that reconstruction using pressure and both crossline and vertical acceleration has excellent fidelity, recapturing highly aliased diffractions that are lost by interpolation of pressure‐only data. We model wave field reconstruction error as a linear function of distance from the nearest physical sensor and find, for this data set with some mismatched shot positions, that the reconstructed wave field error sensitivity to sensor mispositioning is one‐third that of the recorded wave field sensitivity. Multicomponent reconstruction is also more repeatable, outperforming single‐component reconstruction in which wave field mismatch correlates with geometry mismatch. We find that adequate repeatability may mask poor reconstruction fidelity and that aliased reconstructions will repeat if the survey geometry repeats. Although the multicomponent 3D data have only 500 m in‐line aperture, limiting the attenuation of non‐repeating multiples, the level of repeatability achieved is extremely encouraging compared to full‐aperture, pressure‐only, time‐lapse data sets at an equivalent stage of processing.  相似文献   

19.
Scattered ground roll is a type of noise observed in land seismic data that can be particularly difficult to suppress. Typically, this type of noise cannot be removed using conventional velocity‐based filters. In this paper, we discuss a model‐driven form of seismic interferometry that allows suppression of scattered ground‐roll noise in land seismic data. The conventional cross‐correlate and stack interferometry approach results in scattered noise estimates between two receiver locations (i.e. as if one of the receivers had been replaced by a source). For noise suppression, this requires that each source we wish to attenuate the noise from is co‐located with a receiver. The model‐driven form differs, as the use of a simple model in place of one of the inputs for interferometry allows the scattered noise estimate to be made between a source and a receiver. This allows the method to be more flexible, as co‐location of sources and receivers is not required, and the method can be applied to data sets with a variety of different acquisition geometries. A simple plane‐wave model is used, allowing the method to remain relatively data driven, with weighting factors for the plane waves determined using a least‐squares solution. Using a number of both synthetic and real two‐dimensional (2D) and three‐dimensional (3D) land seismic data sets, we show that this model‐driven approach provides effective results, allowing suppression of scattered ground‐roll noise without having an adverse effect on the underlying signal.  相似文献   

20.
Due to the complicated geophysical character of tight gas sands in the Sulige gasfield of China, conventional surface seismic has faced great challenges in reservoir delineation. In order to improve this situation, a large‐scale 3D‐3C vertical seismic profiling (VSP) survey (more than 15 000 shots) was conducted simultaneously with 3D‐3C surface seismic data acquisition in this area in 2005. This paper presents a case study on the delineation of tight gas sands by use of multi‐component 3D VSP technology. Two imaging volumes (PP compressional wave; PSv converted wave) were generated with 3D‐3C VSP data processing. By comparison, the dominant frequencies of the 3D VSP images were 10–15 Hz higher than that of surface seismic images. Delineation of the tight gas sands is achieved by using the multi‐component information in the VSP data leading to reduce uncertainties in data interpretation. We performed a routine data interpretation on these images and developed a new attribute titled ‘Centroid Frequency Ratio of PSv and PP Waves’ for indication of the tight gas sands. The results demonstrated that the new attribute was sensitive to this type of reservoir. By combining geologic, drilling and log data, a comprehensive evaluation based on the 3D VSP data was conducted and a new well location for drilling was proposed. The major results in this paper tell us that successful application of 3D‐3C VSP technologies are only accomplished through a synthesis of many disciplines. We need detailed analysis to evaluate each step in planning, acquisition, processing and interpretation to achieve our objectives. High resolution, successful processing of multi‐component information, combination of PP and PSv volumes to extract useful attributes, receiver depth information and offset/ azimuth‐dependent anisotropy in the 3D VSP data are the major accomplishments derived from our attention to detail in the above steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号