首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
简单介绍了湖北省气候特征、2008年天气气候特点和由湖北省气象专家遴选的2008年湖北省17件重大天气气候事件,目的是希望通过公共媒体开展公众评选活动,引导公众关心、关注并参与气象工作。从评选的结果可以看出,公众对重大天气气候事件的判断角度与气象专家的判断角度有一定的不同,公众把造成人员伤亡和财产损失的天气气候事件放在更加突出的位置,而气象专家更多地是判断天气气候事件气象要素值在历史记录中的极端数据所处地位置。针对这一结果,作者提出了加强公共气象服务的六点思考,对于气象部门更好地开展公共气象服务有一定借鉴和启发。  相似文献   

2.
丁一汇  张锦  宋亚芳 《气象》2002,28(3):3-7
2002年3月23日世界气象日的主题是“减低天气和气候极端事件的脆弱性”。针对这个主题,作者对以下四方面问题作了阐述:(1)天气与气候极端事件以及脆弱性的定义;(2)近百年来全球天气与气候极端事件的变化及其与全球气候变化的关系;(3)未来天气与气候极端事件及其影响的预测;(4)天气与气候极端事件的适应与减缓对策。由于篇幅有限,未介绍中国在这方面的研究。  相似文献   

3.
极端天气与气候事件受到全球变暖影响吗?   总被引:2,自引:0,他引:2  
<正>极端天气与气候事件对社会与经济和公众生活与生命的影响很大,因此受到公众和政策制定者的极犬关注。近些年的热点问题是:在全球变暖的背景下,极端天气与气候事件是否会受到影响?要回答这个问题,首先需要了解近些年使用的耦合模式比较计划第五阶段(CMIP5)气候模式对极端天气与气候事件的模拟效果,其次是利用CMIP5气候模式评估观洲到的极端天气与气候事件的变化是否是由全球变暖造成的,最后是利用CMIP5气候模式考  相似文献   

4.
与IPCC第五次评估报告(AR5)相比,在第六次评估报告(AR6)评估中,观测的极端天气气候事件变化证据,特别是归因于人为影响的证据加强。人类活动造成的气候变化已影响到全球每个区域的许多极端天气气候事件。随着未来全球变暖进一步加剧,预估极端热事件、强降水、农业生态干旱的强度和频次以及强台风(飓风)比例等将增加,越罕见的极端天气气候事件,其发生频率的增长百分比越大。这些结论再次凸显了应对气候变化和极端天气气候事件的必要性和紧迫性。  相似文献   

5.
极端天气气候事件是指天气(气候)的状态严重偏离其平均态时所发生的天气(天候)事件,可以认为是异常或很少发生的事件,在统计意义上称为极端事件。  相似文献   

6.
极端事件对人类系统的影响   总被引:1,自引:0,他引:1  
在IPCC特别报告《管理极端事件和灾害风险,推进气候变化适应》中,极端天气气候事件对人类系统的影响是最重要的影响评估内容之一,其评估结果为:极端影响可能缘于极端天气气候事件,但也可能并非极端事件的后果。暴露度和脆弱性是灾害风险的重要决定因素;极端和非极端天气气候事件的严重程度和影响在很大程度上取决于对这些事件的脆弱性和暴露度水平;人居模式、城市化和社会经济状况的变化已经影响观测到的脆弱性和暴露度的变化趋势;无论在发达国家还是发展中国家,沿海人居环境均暴露于极端事件,并受其影响,如小岛屿国家和亚洲大三角洲地区;脆弱人口还包括难民、国内流离失所的人和那些生活在边远地区的人;极端事件将极大地影响与气候联系密切的部门,如水、农业、食物安全、健康和旅游业。  相似文献   

7.
极端天气和气候事件的变化   总被引:4,自引:0,他引:4       下载免费PDF全文
自1950年以来的观测证据表明,有些极端天气和气候事件已经发生了变化。全球尺度上,人为影响可能已经导致极端日最低和最高温度升高;由于平均海平面上升,人类活动可能已对沿海极端高水位事件的增加产生了影响;具有中等信度的是,人为影响已导致全球强降水增加;由于热带气旋历史记录的不确定性、缺乏对热带气旋与气候变化之间关联的物理机制的完整认识及热带气旋自然变率的程度,将可检测到的热带气旋活动变化归因于人为影响仅具有低信度。将单一的极端事件变化归因于人为气候变化具有挑战性。对极端事件变化预估的信度取决于事件的类型、区域和季节、观测资料的数量和质量、基本物理过程的认知水平及模式对其模拟的可靠性。  相似文献   

8.
2009年4月10-11日,"极端天气气候事件指标体系研讨会"暨科技部"十一五"支撑重点项目"我国主要极端天气气候事件及重大气象灾害的监测、检测和预测关键技术研究"项目进展会在江苏扬州市召开.  相似文献   

9.
近年来,由于人类活动及自然因素等的综合影响,全球气候不断出现大范围的异常现象,极端天气气候事件频繁发生,给社会、经济的持续发展和人民生命财产造成了严重的影响和损失.而地处中纬度亚洲大陆东岸,祖国东北端的黑龙江省,幅员辽阔,地形复杂,季风气候明显,极端天气气候事件导致的灾害比较频繁.暴雨洪涝、干旱、低温冻害、暴雪、沙尘暴、冰雹、大雾、雷暴、龙卷、大风等气象灾害每年造成的损失占本省整个自然灾害损失的70%左右,对人民的生产生活造成极大损失.尤其是近10余年来黑龙江省发生极端天气气候事件频繁.  相似文献   

10.
姚望玲  陈正洪  向玉春 《气象》2010,36(11):88-94
根据武汉市1951—2007年间年平均、最高、最低气温与8类年极端天气日数的序列,计算分析其变化趋势及年平均气温与极端天气日数的相关性,引入格兰杰因果性检验法,探讨气候变暖与极端天气事件之间的因果关系。结果发现:(1)近57年来武汉市年平均最低气温增幅为0.45℃/10a,明显高于年平均最高气温0.19℃/10a的增幅,可见气候变暖主要是由夜间气温升高所致;(2)高温和闷热天气事件为增多趋势,其中闷热天气事件最明显,达到2.8 d/10a,而年雷暴、降雪、低温、大风、雾日则均为下降趋势,雷暴、雾和低温事件降幅明显,每10年减少3.0 d、4.0 d和2.1 d。大风和降雪事件,每10年减少1.8 d和1.5 d。暴雨事件波动幅度较小。(3)年平均气温与当年及超前、滞后1~2年的极端天气事件具有高相关性;(4)格兰杰因果性检验结果发现,气候变暖是闷热天气增多和降雪事件减少的原因,同时亦是大风和低温减少的结果。这种因果关系的存在对极端天气事件预测和预估有重要的价值。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

18.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

19.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

20.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.SUBMISSIONAll submitted  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号